Fractional factorial experimental design for optimizing volatile fatty acids from anaerobic fermentation of municipal sludge: Microbial community and activity investigation

被引:5
作者
Nabaterega, Resty [1 ]
Kieft, Brandon
Hallam, Steven J. [2 ,3 ,4 ,5 ,6 ]
Eskicioglu, Cigdem [1 ]
机构
[1] Univ British Columbia, Sch Engn, UBC Bioreactor Technol Grp, Okanagan Campus, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[2] Univ British Columbia, Dept Microbiol & Immunol, Vancouver, BC V6T 1Z1, Canada
[3] Univ British Columbia, Grad Program Bioinformat, Vancouver, BC V6T 1Z4, Canada
[4] Univ British Columbia, Genome Sci & Technol Program, 2329 West Mall, Vancouver, BC V6T 1Z4, Canada
[5] Univ British Columbia, Life Sci Inst, Vancouver, BC V6T 1Z3, Canada
[6] Univ British Columbia, ECOSCOPE Training Program, Vancouver, BC V6T 1Z3, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Volatile fatty acids; Anaerobic fermentation; Microbial activity assays; Response surface methodology; Microbial community; HYDRAULIC RETENTION TIME; WASTE ACTIVATED-SLUDGE; FOOD WASTE; ACIDOGENIC FERMENTATION; EXCESS SLUDGE; CO-DIGESTION; CONVERSION; HYDROGEN; PH; OPTIMIZATION;
D O I
10.1016/j.renene.2022.08.145
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Volatile fatty acids (VFAs) production from municipal sludge is a promising venture for resource recovery while ensuring wastewater treatment plants' ecological and economic sustainability. This study used a fractional factorial design (FFD) and response surface methodology (RSM) to optimize VFAs production from municipal sludge in semi-continuous flow acid fermenters (AFs) based on four critical parameters (i.e., sludge retention time (SRT), sludge composition, pH, and temperature) interactively and individually. To ascribe the mechanisms to VFAs production dynamics, non-methanogenic microbial activity assays and microbial community composition linked to the VFAs yields were explored. FFD and RSM successfully optimized VFAs production in the AFs, and a second-order polynomial model with an R-squared of 0.83 was derived. Optimal model conditions for VFAs production were 3-days SRT, 45 ?, pH 8.1, and 0.92 sludge composition (VS/TS ratio). Under these conditions, the model predicted a 3.47-fold increase in VFAs production, close to the experimental value of 3.48. AFs at pH of 8.1 and varying temperatures harbored the highest proportion of fermentative bacteria, mainly Clostridia, and lowest community diversity, indicating strong selective pressure for VFAs-producing populations. Furthermore, the microbial activities assays provided quantitative functional information linked to the microbial communities in each AF configuration consistent with VFAs production.
引用
收藏
页码:733 / 744
页数:12
相关论文
共 52 条
  • [1] Ackman R. G., 1972, Progress in the Chemistry of Fats and Other Lipids, V12, P165, DOI 10.1016/0079-6832(72)90003-1
  • [2] Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation
    Algapani, Dalal E.
    Qiao, Wei
    Ricci, Marina
    Bianchi, Davide
    Wandera, Simon M.
    Adani, Fabrizio
    Dong, Renjie
    [J]. RENEWABLE ENERGY, 2019, 130 : 1108 - 1115
  • [3] Alzate Moncada María Soledad, 2016, Rev. ion, V29, P117, DOI 10.18273/revion.v29n1-2016010
  • [4] APHA, 2006, STANDARD METHODS EXA
  • [5] Rheology of a primary and secondary sewage sludge mixture: Dependency on temperature and solid concentration
    Baroutian, Saeid
    Eshtiaghi, Nicky
    Gapes, Daniel J.
    [J]. BIORESOURCE TECHNOLOGY, 2013, 140 : 227 - 233
  • [6] Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut
    Belenguer, Alvaro
    Duncan, Sylvia H.
    Calder, A. Graham
    Holtrop, Grietje
    Louis, Petra
    Lobley, Gerald E.
    Flint, Harry J.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2006, 72 (05) : 3593 - 3599
  • [7] Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2
    Bolyen, Evan
    Rideout, Jai Ram
    Dillon, Matthew R.
    Bokulich, NicholasA.
    Abnet, Christian C.
    Al-Ghalith, Gabriel A.
    Alexander, Harriet
    Alm, Eric J.
    Arumugam, Manimozhiyan
    Asnicar, Francesco
    Bai, Yang
    Bisanz, Jordan E.
    Bittinger, Kyle
    Brejnrod, Asker
    Brislawn, Colin J.
    Brown, C. Titus
    Callahan, Benjamin J.
    Caraballo-Rodriguez, Andres Mauricio
    Chase, John
    Cope, Emily K.
    Da Silva, Ricardo
    Diener, Christian
    Dorrestein, Pieter C.
    Douglas, Gavin M.
    Durall, Daniel M.
    Duvallet, Claire
    Edwardson, Christian F.
    Ernst, Madeleine
    Estaki, Mehrbod
    Fouquier, Jennifer
    Gauglitz, Julia M.
    Gibbons, Sean M.
    Gibson, Deanna L.
    Gonzalez, Antonio
    Gorlick, Kestrel
    Guo, Jiarong
    Hillmann, Benjamin
    Holmes, Susan
    Holste, Hannes
    Huttenhower, Curtis
    Huttley, Gavin A.
    Janssen, Stefan
    Jarmusch, Alan K.
    Jiang, Lingjing
    Kaehler, Benjamin D.
    Bin Kang, Kyo
    Keefe, Christopher R.
    Keim, Paul
    Kelley, Scott T.
    Knights, Dan
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (08) : 852 - 857
  • [8] Exact sequence variants should replace operational taxonomic units in marker-gene data analysis
    Callahan, Benjamin J.
    McMurdie, Paul J.
    Holmes, Susan P.
    [J]. ISME JOURNAL, 2017, 11 (12) : 2639 - 2643
  • [9] Polyhydroxyalkanoate production from fermented volatile fatty acids: Effect of pH and feeding regimes
    Chen, Hong
    Meng, Huijuan
    Nie, Zuchao
    Zhang, Mingmei
    [J]. BIORESOURCE TECHNOLOGY, 2013, 128 : 533 - 538
  • [10] Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology
    Chen Hong
    Wu Haiyun
    [J]. BIORESOURCE TECHNOLOGY, 2010, 101 (14) : 5487 - 5493