On the regularity of maximal operators

被引:70
作者
Carneiro, Emanuel [1 ]
Moreira, Diego [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
maximal operator; bilinear maximal; Sobolev spaces; weak differentiability; weak continuity;
D O I
10.1090/S0002-9939-08-09515-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity of the bilinear maximal operator when applied to Sobolev functions, proving that it maps W-1,W-p(R) x W-1,W-q(R) -> W-1,W-r(R) with 1 < p, q < infinity and r >= 1, boundedly and continuously. The same result holds on R-n when r > 1. We also investigate the almost everywhere and weak convergence under the action of the classical Hardy-Littlewood maximal operator, both in its global and local versions.
引用
收藏
页码:4395 / 4404
页数:10
相关论文
共 10 条
[1]   Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities [J].
Aldaz, J. M. ;
Perez Lazaro, J. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 359 (05) :2443-2461
[2]  
Evans L.C., 1992, STUD ADV MATH
[3]  
Hajlasz P, 2004, ANN ACAD SCI FENN-M, V29, P167
[4]   Regularity of the fractional maximal function [J].
Kinnunen, J ;
Saksman, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :529-535
[5]   The Hardy-Littlewood maximal function of a Sobolev function [J].
Kinnunen, J .
ISRAEL JOURNAL OF MATHEMATICS, 1997, 100 (1) :117-124
[6]  
Kinnunen J, 1998, J REINE ANGEW MATH, V503, P161
[7]   The bilinear maximal functions map into Lp for 2/3 &lt; p ≤ 1 [J].
Lacey, MT .
ANNALS OF MATHEMATICS, 2000, 151 (01) :35-57
[8]  
Luiro H, 2007, P AM MATH SOC, V135, P243
[9]   On the behavior of weak convergence under nonlinearities and applications [J].
Moreira, DR ;
Teixeira, EV .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (06) :1647-1656
[10]   Strong solutions for differential equations in abstract spaces [J].
Teixeira, EV .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 214 (01) :65-91