On the regularity of maximal operators

被引:68
作者
Carneiro, Emanuel [1 ]
Moreira, Diego [2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
maximal operator; bilinear maximal; Sobolev spaces; weak differentiability; weak continuity;
D O I
10.1090/S0002-9939-08-09515-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity of the bilinear maximal operator when applied to Sobolev functions, proving that it maps W-1,W-p(R) x W-1,W-q(R) -> W-1,W-r(R) with 1 < p, q < infinity and r >= 1, boundedly and continuously. The same result holds on R-n when r > 1. We also investigate the almost everywhere and weak convergence under the action of the classical Hardy-Littlewood maximal operator, both in its global and local versions.
引用
收藏
页码:4395 / 4404
页数:10
相关论文
共 10 条