The critical velocity of rebound determined for sub-micron silver particles with a variable nozzle area impactor

被引:15
作者
Arffman, Anssi [1 ]
Kuuluyainen, Heino [1 ]
Harra, Juha [1 ]
Vuorinen, Ossi [1 ]
Juuti, Paxton [1 ]
Yli-Ojanpera, Jaakko [1 ]
Makela, Jyrki M. [1 ]
Keskinen, Jorma [1 ]
机构
[1] Tampere Univ Technol, Dept Phys, Aerosol Phys Lab, FIN-33101 Tampere, Finland
关键词
Silver nanoparticle; Rebound; Critical velocity; Low-pressure impactor; AEROSOL-PARTICLES; BOUNCE; MONODISPERSE; FRAGMENTATION; NANOPARTICLES; RESOLUTION; DENSITY; STATE;
D O I
10.1016/j.jaerosci.2015.04.003
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The critical velocity of rebound was determined for spherical silver aerosol particles in the size range of 20-1000 nm. A novel instrument, a variable nozzle area impactor, was especially designed for measuring the particle-surface interaction as a function of the particle impact velocity. The experimental results were combined with a numerical model in order to obtain the impact velocities. The experiments were carried out using a plain aluminum collection substrate in the impactor. Our results show that the critical velocity of rebound decreases from 14 to 0.022 m/s as the particle size increases from 20 to 1000 nm. Furthermore, the critical velocity was found to be proportional to the power of -1.6 of the particle size, instead of the theoretical inverse proportionality. This result is in line with the previous studies for micron-sized particles. In the nanoparticle size range, the obtained values are approximately 3-10 times greater than the recent literature values. This discrepancy can most likely be explained by the different surface materials. All in all, our results give valuable information about the particle-surface interactions in the sub-micron size range. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:32 / 43
页数:12
相关论文
共 37 条
[1]   High-resolution low-pressure cascade impactor [J].
Arffman, A. ;
Yli-Ojanpera, J. ;
Kalliokoski, J. ;
Harra, J. ;
Pirjola, L. ;
Karjalainen, P. ;
Ronkko, T. ;
Keskinen, J. .
JOURNAL OF AEROSOL SCIENCE, 2014, 78 :97-109
[2]   The influence of nozzle throat length on the resolution of a low pressure impactor-An experimental and numerical study [J].
Arffman, A. ;
Yli-Ojanpera, J. ;
Keskinen, J. .
JOURNAL OF AEROSOL SCIENCE, 2012, 53 :76-84
[3]   Simulation of low pressure impactor collection efficiency curves [J].
Arffman, A. ;
Marjamaki, M. ;
Keskinen, J. .
JOURNAL OF AEROSOL SCIENCE, 2011, 42 (05) :329-340
[4]   Impactor Apparatus for the Study of Particle Rebound: Relative Humidity and Capillary Forces [J].
Bateman, Adam P. ;
Belassein, Helene ;
Martin, Scot T. .
AEROSOL SCIENCE AND TECHNOLOGY, 2014, 48 (01) :42-52
[5]   APS RESPONSE TO NONSPHERICAL PARTICLES AND EXPERIMENTAL-DETERMINATION OF DYNAMIC SHAPE FACTOR [J].
BROCKMANN, JE ;
RADER, DJ .
AEROSOL SCIENCE AND TECHNOLOGY, 1990, 13 (02) :162-172
[6]   PARTICLE BOUNCE IN CASCADE IMPACTORS [J].
CHENG, YS ;
YEH, HC .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1979, 13 (11) :1392-1396
[7]   CAPTURE OF AEROSOL PARTICLES BY SURFACES [J].
DAHNEKE, B .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1971, 37 (02) :342-&
[8]  
de la Mora JF, 2003, J AEROSOL SCI, V34, P79
[9]  
DOTTAVIO T, 1983, AEROSOL SCI TECH, V2, P91
[10]  
Esmen N. A., 1978, Journal of Aerosol Science, V9, P547, DOI 10.1016/0021-8502(78)90020-4