Thermoelectric and electronic properties of chromium substituted tetrahedrite

被引:12
作者
Kumar, D. S. Prem [1 ]
Tippireddy, Sahil [2 ]
Ramakrishnan, Anbalagan [3 ]
Chen, Kuei-Hsien [3 ]
Malar, P. [1 ]
Mallik, Ramesh Chandra [2 ]
机构
[1] SRM Univ, Res Inst, Dept Phys & Nanotechnol, Kattankulathur 603203, India
[2] Indian Inst Sci, Dept Phys, Thermoelect Mat & Device Lab, Bangalore 560012, Karnataka, India
[3] Acad Sinica, Inst Atom & Mol Sci, 1,Sec 4,Roosevelt Rd, Taipei, Taiwan
关键词
tetrahedrite; XPS; DFT; magnetic properties; transport properties; FUTURE; FIGURE; MERIT; PBTE;
D O I
10.1088/1361-6641/aafa31
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Cr substituted tetrahedrites with the chemical formula Cu12-xCrxSb4S13 (x = 0.15, 0.25, 0.35, 0.5, 0.75, 1.0) have been synthesised for thermoelectric study. Cr substitutes at the Cu site to optimize the thermoelectric properties and achieve a higher figure of merit (zT). X-Ray diffraction (XRD) analysis revealed that the tetrahedrite is the major phase with minor impurity phases. Electron probe microanalysis (EPMA) shows the formation of tetrahedrite main phase with near stoichiometry and the presence of Cu3SbS4, CuSbS2 and Sb as secondary phases. X-ray photoelectron spectroscopy (XPS) shows the oxidation state of Cu, Sb and S as +1, +3 and -2, respectively, whereas for Cr, it could not be identified. Temperature-dependent magnetic susceptibility of sample x = 0.75 shows antiferromagnetic correlation originating from the Cr ion. The calculated effective magnetic moment of 2.83 mu(B) per Cr atom indicates the presence of Cr+4 in this sample. The decrease in the electrical resistivity upon doping indicates the compensation of holes due to the substitution of Cr at the Cu site. But the x = 0.35 sample is not following the trend due to larger compensation of holes with an activation energy of 124.6 meV. The temperature-dependent behaviour of electrical resistivity shows the shift in the Fermi level from the valance band towards the band gap. The absolute Seebeck coefficient is positive throughout the temperature range and follows a similar trend as that of electrical resistivity, with the exception of the x = 0.35 sample. The electronic thermal conductivity reduces due to hole compensation caused by Cr substitution. Moreover, the substitution of Cr effectively reduces the lattice thermal conductivity due to point defect scattering of phonons. A maximum zT of 1.0 is achieved for sample x = 0.35 at 700 K.
引用
收藏
页数:14
相关论文
共 43 条
[1]  
[Anonymous], 2005, PHYS REV B
[2]   Up-scaled synthesis process of sulphur-based thermoelectric materials [J].
Barbier, Tristan ;
Lemoine, Pierric ;
Martinet, Sabrina ;
Eriksson, Mirva ;
Gilmas, Margaux ;
Hug, Eric ;
Guelou, Gabin ;
Vaqueiro, Paz ;
Powell, Anthony V. ;
Guilmeau, Emmanuel .
RSC ADVANCES, 2016, 6 (12) :10044-10053
[3]   Phase transition enhanced thermoelectric figure-of-merit in copper chalcogenides [J].
Brown, David R. ;
Day, Tristan ;
Borup, Kasper A. ;
Christensen, Sebastian ;
Iversen, Bo B. ;
Snyder, G. Jeffrey .
APL MATERIALS, 2013, 1 (05)
[4]   High-performance SnSe thermoelectric materials: Progress and future challenge [J].
Chen, Zhi-Gang ;
Shi, Xiaolei ;
Zhao, Li-Dong ;
Zou, Jin .
PROGRESS IN MATERIALS SCIENCE, 2018, 97 :283-346
[5]   Tetrahedrites as thermoelectric materials: an overview [J].
Chetty, R. ;
Bali, A. ;
Mallik, R. C. .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (48) :12364-12378
[6]   Thermoelectric properties of Co substituted synthetic tetrahedrite [J].
Chetty, R. ;
Bali, A. ;
Naik, M. H. ;
Rogl, G. ;
Rogl, P. ;
Jain, M. ;
Suwas, S. ;
Mallik, R. C. .
ACTA MATERIALIA, 2015, 100 :266-274
[7]   Thermoelectric properties of a Mn substituted synthetic tetrahedrite [J].
Chetty, Raju ;
Kumar, Prem D. S. ;
Rogl, Gerda ;
Rogl, Peter ;
Bauer, Ernst ;
Michor, Herwig ;
Suwas, Satyam ;
Puchegger, Stephan ;
Giester, Gerald ;
Mallik, Ramesh Chandra .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (03) :1716-1727
[8]   PBTE RF-SPUTTERED INFRARED DETECTORS [J].
CORSI, C .
APPLIED PHYSICS LETTERS, 1974, 24 (03) :137-139
[9]   POSSIBLE INVERTED BAND-STRUCTURE IN PBPO [J].
DALVEN, R .
PHYSICAL REVIEW LETTERS, 1972, 28 (02) :91-&
[10]   LATTICE THERMAL CONDUCTIVITY [J].
DUGDALE, JS ;
MACDONALD, DKC .
PHYSICAL REVIEW, 1955, 98 (06) :1751-1752