Symmetry projection schemes for Gaussian Monte Carlo methods

被引:24
作者
Assaad, FF [1 ]
Werner, P
Corboz, P
Gull, E
Troyer, M
机构
[1] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany
[2] ETH Honggerberg, Inst Theoret Phys, CH-8093 Zurich, Switzerland
关键词
D O I
10.1103/PhysRevB.72.224518
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A sign-free Monte Carlo method for the Hubbard model has recently been proposed by Corney and Drummond. High-precision measurements on small clusters show that ground-state correlation functions are not correctly reproduced. We argue that the origin of this mismatch lies in the fact that the low-temperature density matrix does not have the symmetries of the Hamiltonian. Here we show that supplementing the algorithm with symmetry projection schemes provides reliable and accurate estimates of ground-state properties.
引用
收藏
页数:10
相关论文
共 11 条
  • [1] Numerical study of the two-dimensional Heisenberg model using a Green function Monte Carlo technique with a fixed number of walkers
    Buonaura, MC
    Sorella, S
    [J]. PHYSICAL REVIEW B, 1998, 57 (18) : 11446 - 11456
  • [2] Gaussian quantum Monte Carlo methods for fermions and bosons
    Corney, JF
    Drummond, PD
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (26)
  • [3] CORNEY JF, CONDMAT0411712
  • [4] Gardiner C. W., 1985, Handbook of Stochastic Methods
  • [5] Kloeden P. E., 1994, NUMERICAL SOLUTION S
  • [6] The theory of everything
    Laughlin, RB
    Pines, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) : 28 - 31
  • [7] Quantum-number projection in the path-integral renormalization group method
    Mizusaki, T
    Imada, M
    [J]. PHYSICAL REVIEW B, 2004, 69 (12):
  • [8] NEGELE JW, 1988, QUANTUM MANY BODY SY
  • [9] D-WAVE, DIMER, AND CHIRAL STATES IN THE 2-DIMENSIONAL HUBBARD-MODEL
    PAROLA, A
    SORELLA, S
    PARRINELLO, M
    TOSATTI, E
    [J]. PHYSICAL REVIEW B, 1991, 43 (07): : 6190 - 6193
  • [10] WIGNER EP, 1962, GROUP THEORY ITS APP