Ag nanoparticles embedded in a magnetic composite for magnetic separation applications

被引:3
作者
Lopez, J. [1 ]
Aguilar-Torres, J. M. [2 ,3 ]
Arce-Saldana, L. A. [2 ,4 ]
Portillo-Lopez, A. [3 ]
Gonzalez-Martinez, S. [3 ]
Betancourt, J. S. [5 ,6 ]
Gomez, M. E. [5 ]
Vargas-Viveros, E. [3 ]
Dominguez, D. [4 ]
Tiznado, H. [4 ]
Soto, G. [4 ]
机构
[1] CONACYT, Ctr Nanociencias & Nanotecnol CNyN, Km 107 Carretera Tijuana Ensenada S-N, Ensenada 22800, Baja California, Mexico
[2] CICESE, Km 107 Carretera Tijuana Ensenada S-N, Ensenada 22800, Baja California, Mexico
[3] UABC, Fac Ingn Arquitectura & Diseno, Fac Ciencias, Km 107 Carretera Transpeninsular Ensenada Tijuana, Ensenada 22860, Baja California, Mexico
[4] Univ Nacl Autonoma Mexico, Ctr Nanociencias & Nanotecnol CNyN, Km 107 Carretera Tijuana Ensenada S-N, Ensenada 22800, Baja California, Mexico
[5] Univ Valle, Phys Dept, Thin Film Grp, Calle 13 100-00, Cali 25360, Colombia
[6] CENM, Calle 13 100-00, Cali 25360, Colombia
关键词
Core-shell magnetic nanostructures; Fe3C; Activated carbon; Magnetic separation; Wastewater treatment; Antibacterial material; SILVER NANOPARTICLES; ACTIVATED CARBON; GOLD NANOPARTICLES; FE3C NANOPARTICLES; NANOCOMPOSITES; REDUCTION; MECHANISM; NANOMATERIALS; ADSORPTION; PARTICLES;
D O I
10.1016/j.jallcom.2019.02.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This work is focused on the preparation of a multifunctional compound consisting of silver nanoparticles (AgNPs) embedded in a matrix of amorphous carbon previously loaded with Fe3C magnetic particles. The objective is to use the antibacterial properties of the AgNPs for environmental purposes, in such a way that the AgNPs can be recovered by physical means (magnetic separation). The synthesis method was direct from ferrocene, silver nitrate and polyethylene glycol placed in a reaction tube and pyrolyzed by a plasma produced under vacuum conditions. For this, a conventional microwave oven was used. The compound obtained is a black powder, with similar consistency to graphite, but it responds strongly to the application of magnetic fields. The material was thoroughly characterized by X-ray photoelectron, energy-dispersive X-ray spectroscopies; transmission and scanning electron microscopies; X-ray diffraction, as well magnetic characterizations using a vibrating sample magnetometer. The material showed a homogeneous dispersion of metal particles in the carbon matrix. We conclude that the combination of magnetic and antibacterial properties makes this material interesting for several applications through the use of magnetic separation protocols. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:839 / 847
页数:9
相关论文
共 50 条
  • [31] Green synthesis of Fe3O4/Ag composite nanoparticles using Moringa oleifera: Exploring microstructure, optical, and magnetic properties for magnetic hyperthermia applications
    Darmawan, Mahardika Yoga
    Istiqomah, Nurul Imani
    Adrianto, Nanang
    Tumbelaka, Rivaldo Marsel
    Nugraheni, Ari Dwi
    Suharyadi, Edi
    RESULTS IN CHEMISTRY, 2023, 6
  • [32] Structural characterization of copolymer embedded magnetic nanoparticles
    Nedelcu, G. G.
    Nastro, A.
    Filippelli, L.
    Cazacu, M.
    Iacob, M.
    Rossi, C. Oliviero
    Popa, A.
    Toloman, D.
    Dobromir, M.
    Iacomi, F.
    APPLIED SURFACE SCIENCE, 2015, 352 : 109 - 116
  • [33] Design of magnetic nanoparticles with high magnetic separation efficiencies and durability for Cu2+ adsorption
    Wang, Shenghua
    Yu, Yingying
    He, Le
    Zhang, Dake
    Ye, Miaomiao
    NANOTECHNOLOGY, 2020, 31 (08)
  • [34] Optimizing colloidal dispersity of magnetic nanoparticles based on magnetic separation with magnetic nanowires array
    Jianfei Sun
    Miaomiao He
    Xuan Liu
    Ning Gu
    Applied Physics A, 2015, 118 : 569 - 577
  • [35] Magnetic separation of pentlandite from serpentine by selective magnetic coating
    Lu, Ji-wei
    Yuan, Zhi-tao
    Guo, Xiao-fei
    Tong, Zhong-yun
    Li, Li-xia
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2019, 26 (01) : 1 - 10
  • [36] Optimizing colloidal dispersity of magnetic nanoparticles based on magnetic separation with magnetic nanowires array
    Sun, Jianfei
    He, Miaomiao
    Liu, Xuan
    Gu, Ning
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2015, 118 (02): : 569 - 577
  • [37] Removal Capacity and Mechanism of Modified Chitosan for Ochratoxin A Based on Rapid Magnetic Separation Technology
    Xin, Xueyan
    Nan, Mina
    Bi, Yang
    Xue, Huali
    Lyu, Liang
    Jiang, Daiwei
    Chen, Hongjuan
    Luo, Qifang
    FOODS, 2025, 14 (04)
  • [38] Multimodal Magnetic-Plasmonic Nanoparticles for Biomedical Applications
    Stafford, Shelley
    Garcia, Raquel Serrano
    Gun'ko, Yurii K.
    APPLIED SCIENCES-BASEL, 2018, 8 (01):
  • [39] Magnetic nanocatalysts: supported metal nanoparticles for catalytic applications
    Rossi, Liane M.
    Costa, Natalia J. S.
    Silva, Fernanda P.
    Goncalves, Renato V.
    NANOTECHNOLOGY REVIEWS, 2013, 2 (05) : 597 - 614
  • [40] Functionalized silica coated magnetic nanoparticles with biological species for magnetic separation
    Yu, C. H.
    Tam, K. Y.
    Lo, C. C. H.
    Tsang, S. C.
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (06) : 2436 - 2438