K-theory for ring C*-algebras attached to function fields with only one infinite place

被引:0
作者
Li, Xin [1 ]
机构
[1] Math Inst, D-48149 Munster, Germany
关键词
K-theory; ring C*-algebra; function field;
D O I
10.1017/is011011023jkt177
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the K-theory of ring C*-algebras associated to rings of integers in global function fields with only a single infinite place. First, we compute the torsion-free part of the K-groups of these ring C*-algebras. Secondly, we show that, under a certain primeness condition, the torsion part of K-theory determines the inertia degrees at infinity of our function fields.
引用
收藏
页码:203 / 231
页数:29
相关论文
共 10 条
  • [1] [Anonymous], 2000, Analytic K-Homology
  • [2] [Anonymous], 1995, BASIC NUMBER THEORY
  • [3] CUNTZ J., 2008, SERIES C REPORTS, P201
  • [4] CUNTZ J., 2010, QUANTA MATH CLAY MAT, V11, P149
  • [5] K-theory for ring C*-algebras attached to polynomial rings over finite fields
    Cuntz, Joachim
    Li, Xin
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2011, 5 (03) : 331 - 349
  • [6] C*-algebras associated with integral domains and crossed products by actions on adele spaces
    Cuntz, Joachim
    Li, Xin
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2011, 5 (01) : 1 - 37
  • [7] Ring C*-algebras
    Li, Xin
    [J]. MATHEMATISCHE ANNALEN, 2010, 348 (04) : 859 - 898
  • [8] Neukirch Jurgen, 1999, ALGEBRAIC NUMBER THE, V322, DOI [10.1007/978-3-662-03983-0, DOI 10.1007/978-3-662-03983-0]
  • [9] PIMSNER M., 1980, J. Operator Theory, V4, P93
  • [10] Rosen M., 2002, Number Theory in Function Fields