Nearly optimal three dimensional layout of hypercube networks

被引:0
|
作者
Calamoneri, T [1 ]
Massini, A [1 ]
机构
[1] Univ Roma La Sapienza, Dept Comp Sci, I-00198 Rome, Italy
来源
GRAPH DRAWING | 2004年 / 2912卷
关键词
hypercube network; three dimensional layout; VLSI layout volume;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the three-dimensional layout of hypercube networks. Namely, we study the problem of laying hypercube networks out on the three-dimensional grid with the properties that all nodes are represented as rectangular slices and lie on two opposite sides of the bounding box of the layout volume. We present both a lower bound and a layout method providing an upper bound on the layout volume of the hypercube network.
引用
收藏
页码:247 / 258
页数:12
相关论文
共 50 条
  • [21] Optimal Tree Contraction and Term Matching on the Hypercube and Related Networks
    E. W. Mayr
    R. Werchner
    Algorithmica, 1997, 18 : 445 - 460
  • [22] Optimal layout for butterfly networks in multilayer VLSI
    Yeh, CH
    2003 INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, PROCEEDINGS, 2003, : 379 - 388
  • [23] Optimal layout for butterfly networks in multilayer VLSI
    Dept. of Electrical and Computer Engineering, Queen's University, Kingston
    ON
    K7L 3N6, Canada
    The International Association for Computers and Communications (IACC), 1600, 379-388 (2003):
  • [24] Optimal embedding of the hypercube on Partitioned Optical Passive Stars networks
    Kaklamanis, C
    Konstantopoulos, C
    EURO-PAR 2005 PARALLEL PROCESSING, PROCEEDINGS, 2005, 3648 : 952 - 961
  • [25] Three-dimensional layout in micro factories
    Scholz-Reiter, Bernd
    Brenner, Nele
    Lütjen, Michael
    Keck, Martin
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2009, 104 (09): : 791 - 795
  • [26] Layout exploration for three-dimensional Networks-on-Chip: Chemical equilibrium simulation approach
    Liu, Zhengxuan
    Song, Guozhi
    Zhou, Yijie
    Zhang, Zhihui
    Cheng, Fangyuan
    MICROELECTRONICS JOURNAL, 2021, 115
  • [27] A mortar edge element method with nearly optimal convergence for three-dimensional Maxwell's equations
    Hu, Qiya
    Shu, Shi
    Zou, Jun
    MATHEMATICS OF COMPUTATION, 2008, 77 (263) : 1333 - 1353
  • [28] Construction of nearly orthogonal Latin hypercube designs
    Efthimiou, Ifigenia
    Georgiou, Stelios D.
    Liu, Min-Qian
    METRIKA, 2015, 78 (01) : 45 - 57
  • [29] Construction of nearly orthogonal Latin hypercube designs
    Gu, Li
    Yang, Jian-Feng
    METRIKA, 2013, 76 (06) : 819 - 830
  • [30] Embedding hierarchical hypercube networks into the hypercube
    Hamdi, M
    Song, SW
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 1997, 8 (09) : 897 - 902