Critical Point Equation on Almost Kenmotsu Manifolds

被引:0
作者
De, U. C. [1 ]
Mandal, K. [1 ]
机构
[1] Univ Calcutta, Kolkata, W Bengal, India
关键词
TOTAL SCALAR CURVATURE; METRICS;
D O I
10.1007/s11253-020-01770-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the critical point equation (CPE) conjecture on almost Kenmotsu manifolds. First, we prove that if a three-dimensional (k, mu)'-almost Kenmotsu manifold satisfies theCPE, then the manifold is either locally isometric to the product space & x210d;(2)(-4) x Double-struck capital R or the manifold is a Kenmotsu manifold. Further, we prove that if the metric of an almost Kenmotsu manifold with conformal Reeb foliation satisfies theCPEconjecture, then the manifold is Einstein.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 19 条
  • [1] [Anonymous], 2017, ARAB J MATH SCI
  • [2] [Anonymous], 2010, PROGR MATH
  • [3] Critical point equation on four-dimensional compact manifolds
    Barros, Abdenago
    Ribeiro, Ernani, Jr.
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (14-15) : 1618 - 1623
  • [4] Besse A.L, 2008, CLASSICS MATH
  • [5] Blair DE., 1976, Contact manifolds in Riemannian geometry
  • [6] De UC, 2016, INT ELECTRON J GEOM, V9, P70
  • [7] De UC, 2017, COMMUN KOREAN MATH S, V32, P401, DOI 10.4134/CKMS.c160073
  • [8] Almost Kenmotsu manifolds and local symmetry
    Dileo, Giulia
    Pastore, Anna Maria
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2007, 14 (02) : 343 - 354
  • [9] Almost Kenmotsu Manifolds and Nullity Distributions
    Dileo, Giulia
    Pastore, Anna
    [J]. JOURNAL OF GEOMETRY, 2009, 93 (1-2) : 46 - 61
  • [10] The critical point equation and contact geometry
    Ghosh A.
    Patra D.S.
    [J]. Journal of Geometry, 2017, 108 (1) : 185 - 194