SOME CLASSES OF ANALYTIC FUNCTIONS ASSOCIATED WITH CONIC REGIONS

被引:29
作者
Sim, Young Jae [2 ]
Kwon, Oh Sang [2 ]
Cho, Nak Eun [3 ]
Srivastava, H. M. [1 ]
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
[2] Kyungsung Univ, Dept Math, Pusan 608736, South Korea
[3] Pukyong Natl Univ, Dept Appl Math, Pusan 608737, South Korea
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2012年 / 16卷 / 01期
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
Analytic functions; Univalent functions; Uniformly convex functions; Uniformly starlike functions; Conformal mapping; Principle of subordination between analytic functions; Caratheodory function; Differential subordination; Fekete-Szego problem; Hadamard product (or convolution); UNIFORMLY CONVEX; STARLIKE;
D O I
10.11650/twjm/1500406547
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of the present paper is to introduce and investigate the function classes k-SP (alpha, beta) and k-UCV (alpha, beta) of analytic functions associated with conic regions in the open unit disk U, which generalize the function classes defined and studied in a series of earlier papers by Kanas et al. [11, 12, 13, 14]. In particular, we consider the extremal problems for each of the above-mentioned function classes. The Fekete-Szego problem is also considered for functions in the class k-SP(alpha, beta). Moreover, we investigate some mapping properties for each of the function classes k-SP(alpha, beta) and k-UCV(alpha, beta).
引用
收藏
页码:387 / 408
页数:22
相关论文
共 27 条
[1]  
Aghalari R., 2003, B MALAYS MATH SCI SO, V26, P153
[2]  
Ali R. M., 2005, INT J MATH MATH SCI, V2005, P561, DOI [10.1155/IJMMS.2005.561, DOI 10.1155/IJMMS.2005.561]
[3]  
Deniz E, 2011, TAIWAN J MATH, V15, P883
[4]  
Goodman A.W., 1991, Ann. Pol. Math., V56, P87, DOI DOI 10.4064/ap-56-1-87-92
[5]  
Graham I. R., 2003, SERIES MONOGRAPHS TX, V255
[6]   Linear operators associated with k-uniformly convex functions [J].
Kanas, S ;
Srivastava, HM .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (02) :121-132
[7]   Differential subordination related to conic sections [J].
Kanas, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 317 (02) :650-658
[8]   Conic regions and k-uniform convexity [J].
Kanas, S ;
Wisniowska, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) :327-336
[9]  
Kanas S., 1998, FOLIA SCI U TEHN RES, V22, P65
[10]  
Kanas S., 1999, SERDICA MATH J, V25, P341