Wigner random banded matrices with sparse structure: Local spectral density of states

被引:92
|
作者
Fyodorov, YV
Chubykalo, OA
Izrailev, FM
Casati, G
机构
[1] PETERSBURG NUCL PHYS INST, GATCHINA 188350, RUSSIA
[2] UNIV BASQUE COUNTRY, FAC QUIM, DEPT FIS MAT, E-20080 SAN SEBASTIAN, SPAIN
[3] BUDKER INST NUCL PHYS, NOVOSIBIRSK 630090, RUSSIA
[4] UNIV MILAN, I-22100 COMO, ITALY
关键词
D O I
10.1103/PhysRevLett.76.1603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Random banded matrices with linearly increasing diagonal elements are recently considered as an attractive model for complex nuclei and atoms. Apart from early papers by Wigner there were no analytical studies on the subject. Ln this Letter we present analytical and numerical results for local spectral density of states (LDOS) for a more general case of matrices with a sparsity inside the band. The crossover from the semicircle form of LDOS to that given by the Breit-Wigner formula is studied in detail.
引用
收藏
页码:1603 / 1606
页数:4
相关论文
共 50 条
  • [1] DENSITY OF STATES FOR BANDED AND SPARSE RANDOM MATRICES
    FEINGOLD, M
    EUROPHYSICS LETTERS, 1992, 17 (02): : 97 - 102
  • [2] DENSITY OF STATES OF SPARSE RANDOM MATRICES
    RODGERS, GJ
    DEDOMINICIS, C
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (09): : 1567 - 1573
  • [3] ON THE DENSITY OF STATES OF SPARSE RANDOM MATRICES
    FYODOROV, YV
    MIRLIN, AD
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (09): : 2219 - 2223
  • [4] Cavity approach to the spectral density of sparse symmetric random matrices
    Rogers, Tim
    Castillo, Isaac Perez
    Kuehn, Reimer
    Takeda, Koujin
    PHYSICAL REVIEW E, 2008, 78 (03):
  • [5] Spectral radii of sparse random matrices
    Benaych-Georges, Florent
    Bordenave, Charles
    Knowles, Antti
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 2141 - 2161
  • [6] Spectral Analysis of Random Sparse Matrices
    Ando, Tomonori
    Kabashima, Yoshiyuki
    Takahashi, Hisanao
    Watanabe, Osamu
    Yamamoto, Masaki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (06) : 1247 - 1256
  • [7] Average density of states for Hermitian Wigner matrices
    Maltsev, Anna
    Schlein, Benjamin
    ADVANCES IN MATHEMATICS, 2011, 228 (05) : 2797 - 2836
  • [8] Spectral large deviations of sparse random matrices
    Ganguly, Shirshendu
    Hiesmayr, Ella
    Nam, Kyeongsik
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (01):
  • [9] Perturbative and nonperturbative parts of eigenstates and local spectral density of states: The Wigner-band random-matrix model
    Wang, WG
    PHYSICAL REVIEW E, 2000, 61 (01) : 952 - 955
  • [10] Spectral approximation of banded Laurent matrices with localized random perturbations
    A. Böttcher
    M. Embree
    M. Lindner
    Integral Equations and Operator Theory, 2002, 42 : 142 - 165