The Schrodinger equation along curves and the quantum harmonic oscillator

被引:25
作者
Lee, Sanghyuk [2 ]
Rogers, Keith M. [1 ]
机构
[1] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
[2] Seoul Natl Univ, Sch Math Sci, Seoul 151742, South Korea
基金
欧洲研究理事会;
关键词
Schrodinger equation; Harmonic oscillator; Pointwise convergence; POINTWISE CONVERGENCE; DIVERGENCE; BOUNDS; SETS;
D O I
10.1016/j.aim.2011.10.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Schrodinger equation associated to the harmonic oscillator, i partial derivative(t)u = Hu, where H = -Delta + |x|(2), with initial data in the Sobolev space H-s (R-d). With d = 2 and s > 3/8, we prove almost everywhere convergence of the solution to its initial data as time tends to zero, which improves a result of Yajima (1990) [30]. To this end, we consider almost everywhere convergence for the free Schrodinger along curves. As it turns out, these problems are more or less equivalent to that of the free Schodinger equation along vertical lines. Our results are obtained by showing the equivalence of related maximal estimates. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1359 / 1379
页数:21
相关论文
共 31 条
[11]   DIVERGENCE OF EIGENFUNCTION-EXPANSIONS [J].
KENIG, CE ;
STANTON, RJ ;
TOMAS, PA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 46 (01) :28-44
[12]   Lp eigenfunction bounds for the hermite operator [J].
Koch, H ;
Tataru, D .
DUKE MATHEMATICAL JOURNAL, 2005, 128 (02) :369-392
[13]  
Lee S, 2006, INT MATH RES NOTICES, V2006
[14]   Bilinear restriction estimates for surfaces with curvatures of different signs [J].
Lee, Sanghyuk .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (08) :3511-3533
[15]   An endpoint space time estimate for the Schrodinger equation [J].
Lee, Sanghyuk ;
Rogers, Keith M. ;
Vargas, Ana .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4266-4285
[16]   Bounds for the maximal function associated to periodic solutions of one-dimensional dispersive equations [J].
Moyua, A. ;
Vega, L. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2008, 40 :117-128
[17]   Restriction theorems and maximal operators related to oscillatory integrals in R3 [J].
Moyua, A ;
Vargas, A ;
Vega, L .
DUKE MATHEMATICAL JOURNAL, 1999, 96 (03) :547-574
[18]  
NIEDERER U, 1974, HELV PHYS ACTA, V47, P167
[19]   Dispersive estimates and the 2D cubic NLS equation [J].
Planchon, F .
JOURNAL D ANALYSE MATHEMATIQUE, 2002, 86 (1) :319-334
[20]   Pointwise convergence of solutions to the nonelliptic Schrodinger equation [J].
Rogers, Keith M. ;
Vargas, Ana ;
Vega, Luis .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (06) :1893-1906