The Schrodinger equation along curves and the quantum harmonic oscillator

被引:25
作者
Lee, Sanghyuk [2 ]
Rogers, Keith M. [1 ]
机构
[1] CSIC UAM UC3M UCM, Inst Ciencias Matemat, Madrid 28049, Spain
[2] Seoul Natl Univ, Sch Math Sci, Seoul 151742, South Korea
基金
欧洲研究理事会;
关键词
Schrodinger equation; Harmonic oscillator; Pointwise convergence; POINTWISE CONVERGENCE; DIVERGENCE; BOUNDS; SETS;
D O I
10.1016/j.aim.2011.10.023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Schrodinger equation associated to the harmonic oscillator, i partial derivative(t)u = Hu, where H = -Delta + |x|(2), with initial data in the Sobolev space H-s (R-d). With d = 2 and s > 3/8, we prove almost everywhere convergence of the solution to its initial data as time tends to zero, which improves a result of Yajima (1990) [30]. To this end, we consider almost everywhere convergence for the free Schrodinger along curves. As it turns out, these problems are more or less equivalent to that of the free Schodinger equation along vertical lines. Our results are obtained by showing the equivalence of related maximal estimates. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1359 / 1379
页数:21
相关论文
共 31 条
[1]   On the dimension of divergence sets of dispersive equations [J].
Antonio Barcelo, Juan ;
Bennett, Jonathan ;
Carbery, Anthony ;
Rogers, Keith M. .
MATHEMATISCHE ANNALEN, 2011, 349 (03) :599-622
[2]  
Bennett J., SIZE DIVERGENC UNPUB
[3]  
BOURGAIN, 1991, PRINCETON MATH SER, V42, P83
[4]   Critical nonlinear Schrodinger equations with and without harmonic potential [J].
Carles, R .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (10) :1513-1523
[5]  
Carleson L., 1979, SOME ANALYTICAL PROB, V779, P5
[6]  
COWLING MG, 1983, LECT NOTES MATH, V992, P83
[7]  
Dahlberg B., 1982, LECT NOTES MATH, P205, DOI 10.1007/BFb0093289
[8]   SPHERICAL SUMMATION MULTIPLIERS [J].
FEFFERMAN, C .
ISRAEL JOURNAL OF MATHEMATICS, 1973, 15 (01) :44-52
[9]  
Feynman R. P., 2010, Quantum Mechanics and Path Integrals, DOI 10.1063/1.3048320
[10]   A STRONG TYPE (2,2) ESTIMATE FOR A MAXIMAL OPERATOR ASSOCIATED TO THE SCHRODINGER-EQUATION [J].
KENIG, CE ;
RUIZ, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 280 (01) :239-246