Factors affecting the structural stability of three contrasting soils of China

被引:9
作者
Alekseeva, T [1 ]
Alekseev, A [1 ]
机构
[1] Russian Acad Sci, Inst Soil Sci & Photosynthesis, Pushchino 142292, Moscow Region, Russia
关键词
soil structure; dispersion; clay mineralogy; iron oxide; Mossbauer spectroscopy; specific surface properties;
D O I
10.1016/S0341-8162(99)00055-7
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The structural stability of eight samples representing three soil profiles from tropical and subtropical regions of China (Latosol, Red Earth and Yellow Brown Earth) was studied by dispersion treatments. The samples were treated with the following solutions in order without previous mechanical disruption: (I) H2O, (II) 0.1 N NaCl, (III) 0.002% Na2CO3, (IV) 0.1 N NaOH, (V) acid oxalate, (VI) 0.1N NaOH. These procedures were designed to disperse soil samples by removal of potentially aggregating substances and by anion adsorption. After each treatment the clay dispersed was separated by sedimentation and its mineralogical composition was studied by XRD, Mossbauer spectroscopy and magnetic susceptibility measurements to assess the role of mineralogy in the maintenance of soil structure. The amounts of iron extracted by Na-dithionite-citrate-bicarbonate were 9.6-10.8% in the Latosol, 3.1-3.4% in the Red Earth and 0.9-2.1% in the Yellow Brown Earth. It was concentrated in clay fractions and existed mainly as superdispersed particles. The hematite/goethite ratio varied from 1.7 for the Latosol to 0.2 for the Yellow Brown Earth. The clay fraction of the Yellow Brown Earth is vermiculitic and has a permanent negative charge. This soil's structural stability is mainly influenced by exchangeable Ca2+. In the Latosol and the Red Earth, surfaces with variable (pH-dependent) charges prevail because of the large free Fe-oxides contents. Alkaline treatment (TV) promoted most dispersion of these soils, indicating the mainly electrostatic nature of interactions between mineral particles. Thus, the role of the Fe oxide minerals in these soils is one of aggregation rather than cementation. The aggregation properties of the Latosol and Red Earth are relict paleosol features inherited from an earlier period of cooler and wetter climate than the present. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:45 / 64
页数:20
相关论文
共 36 条
[1]  
ALEKSEEV A, 1992, THESIS MOSCOW U RUSS
[2]  
Alekseeva T., 1995, International Agrophysics, V9, P171
[3]  
Alekseeva TV, 1997, EURASIAN SOIL SCI+, V30, P867
[4]  
ALEKSEEVA TV, 1991, P 7 EUR C DREZD, P25
[5]  
ALEKSEYEVA TV, 1989, SOV SOIL SCI+, V21, P57
[6]  
ANTIPOVKARATAEV IN, 1948, POCHVENNOM AGREGATE
[7]   MECHANISM OF PYROXENE AND AMPHIBOLE WEATHERING .2. OBSERVATIONS OF SOIL GRAINS [J].
BERNER, RA ;
SCHOTT, J .
AMERICAN JOURNAL OF SCIENCE, 1982, 282 (08) :1214-1231
[8]  
Bigham J.M., 1997, ADV GEOECOL, P193
[9]  
BLECHIKOVA NP, 1965, AGROCHIMICHESKIE MET
[10]  
CAMBIER P, 1988, SCI SOL, V26, P223