Isoclinism of crossed modules

被引:8
作者
Odabas, A. [1 ]
Uslu, E. O. [1 ]
Ilgaz, E. [1 ]
机构
[1] Osmangazi Univ, Dept Math & Comp Sci, Eskisehir, Turkey
关键词
Isoclinism; Crossed module; GAP; AUTOMORPHISMS;
D O I
10.1016/j.jsc.2015.08.006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we introduce the notion of isoclinism among crossed modules and describe various properties of the notion. We give an algorithm for checking isoclinism among crossed modules and apply the algorithm (implemented in GAP) to classify certain crossed modules. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:408 / 424
页数:17
相关论文
共 26 条
[1]   Enumeration of Cat1-groups of low order [J].
Alp, M ;
Wensley, CD .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2000, 10 (04) :407-424
[2]  
Alp M., 2015, CROSSED MODULES CAT1
[3]  
Berkovich Y, 2008, DEGRUYTER EXPOS MATH, V47, P1, DOI 10.1515/9783110208238
[4]  
BEYL FR, 1982, GROUP EXTENSIONS REP
[5]  
Brown R, 2011, EMS TRACTS MATH, V15, P1
[6]   Computation and homotopical applications of induced crossed modules [J].
Brown, R ;
Wensley, CD .
JOURNAL OF SYMBOLIC COMPUTATION, 2003, 35 (01) :59-72
[7]   Computing group resolutions [J].
Ellis, G .
JOURNAL OF SYMBOLIC COMPUTATION, 2004, 38 (03) :1077-1118
[8]  
Ellis G., 2013, HOMOLOGICAL ALGEBRA
[9]   Computational homology of n-types [J].
Ellis, Graham ;
Le Van Luyen .
JOURNAL OF SYMBOLIC COMPUTATION, 2012, 47 (11) :1309-1317
[10]  
Hall M., 1964, The groups of order 2n (n = 6)