Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and ex Situ Characterization

被引:83
作者
Barin, Gabriela Bonin [1 ]
Fairbrother, Andrew [1 ,9 ]
Rotach, Lukas [1 ]
Bayle, Maxime [3 ,10 ]
Paillet, Matthieu [3 ]
Liang, Liangbo [4 ,5 ]
Meunier, Vincent [5 ]
Hauert, Roland [2 ]
Dumslaff, Tim [6 ]
Narita, Akimitsu [6 ]
Muellen, Klaus [6 ]
Sahabudeen, Hafeesudeen [7 ]
Berger, Reinhard [7 ]
Feng, Xinliang [7 ]
Fasel, Roman [1 ,8 ]
Ruffieux, Pascal [1 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Nanotech Surfaces Lab, CH-8600 Dubendorf, Switzerland
[2] Empa, Swiss Fed Labs Mat Sci & Technol, Joining Technol & Corros Lab, CH-8600 Dubendorf, Switzerland
[3] Univ Montpellier, CNRS, Lab Charles Coulomb L2C, Montpellier, France
[4] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[5] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
[6] Max Planck Inst Polymer Res, Ackermannweg 10, D-55128 Mainz, Germany
[7] Tech Univ Dresden, Dept Chem & Food Chem, Chair Mol Funct Mat, Mommsenstr 4, Dresdan, Germany
[8] Univ Bern, Dept Chem & Biochem, Freiestr 3, CH-3012 Bern, Switzerland
[9] NIST, Engn Lab, Gaithersburg, MD 20899 USA
[10] Univ Nantes, CNRS, Inst Mat Jean Rouxel IMN, 2 Rue Houssiniere,BP 32229, F-44322 Nantes 3, France
基金
欧盟地平线“2020”; 瑞士国家科学基金会;
关键词
graphene nanoribbons; substrate transfer; multiwavelength Raman spectroscopy; scanning tunneling microscopy; atomic force microscopy; optical properties; RAMAN-SPECTROSCOPY; WS2;
D O I
10.1021/acsanm.9b00151
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recent progress in the on-surface synthesis of graphene nanoribbons (GNRs) has given access to atomically precise narrow GNRs with tunable electronic band gaps which makes them excellent candidates for room temperature switching devices such as field-effect transistors (FET). However, in spite of their exceptional properties, significant challenges remain for GNR processing and characterization. This contribution addresses some of the most important challenges, including GNR fabrication scalability, substrate transfer, long-term stability under ambient conditions, and ex situ characterization. We focus on 7- and 9-atom-wide armchair graphene nanoribbons (i.e., 7-AGNR and 9-AGNR) grown on 200 nm Au(111)/mica substrates using a high throughput system. Transfer of both 7- and 9-AGNRs from their Au growth substrate onto various target substrates for additional characterization is accomplished utilizing a polymer-free method that avoids residual contamination. This results in a homogeneous GNR film morphology with very few tears and wrinkles, as examined by atomic force microscopy. Raman spectroscopy indicates no significant degradation of GNR quality upon substrate transfer and reveals that GNRs have remarkable stability under ambient conditions over a 24 month period. The transferred GNRs are analyzed using multiwavelength Raman spectroscopy, which provides detailed insight into the wavelength dependence of the width-specific vibrational modes. Finally, we characterize the optical properties of 7- and 9-AGNRs via ultraviolet-isible (UV-vis) spectroscopy.
引用
收藏
页码:2184 / 2192
页数:17
相关论文
共 42 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[2]   Optimized graphene transfer: Influence of polymethylmethacrylate (PMMA) layer concentration and baking time on graphene final performance [J].
Barin, Gabriela Bonin ;
Song, Yi ;
Gimenez, Iara de Fatima ;
Souza Filho, Antonio Gomes ;
Barretto, Ledjane Silva ;
Kong, Jing .
CARBON, 2015, 84 :82-90
[3]   Bottom-up graphene nanoribbon field-effect transistors [J].
Bennett, Patrick B. ;
Pedramrazi, Zahra ;
Madani, Ali ;
Chen, Yen-Chia ;
de Oteyza, Dimas G. ;
Chen, Chen ;
Fischer, Felix R. ;
Crommie, Michael F. ;
Bokor, Jeffrey .
APPLIED PHYSICS LETTERS, 2013, 103 (25)
[4]  
Cai JM, 2014, NAT NANOTECHNOL, V9, P896, DOI [10.1038/NNANO.2014.184, 10.1038/nnano.2014.184]
[5]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[6]  
Casiraghi C., 2017, GRAPHITA SELECTED PA, DOI [DOI 10.1007/978-3-319-58134-7_2, 10.1007/978-3-319-58134-7_2]
[7]   Raman spectroscopy of polyconjugated molecules and materials: confinement effect in one and two dimensions [J].
Castiglioni, C ;
Tommasini, M ;
Zerbi, G .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2004, 362 (1824) :2425-2459
[8]   Atypical Exciton-Phonon Interactions in WS2 and WSe2 Monolayers Revealed by Resonance Raman Spectroscopy [J].
del Corro, E. ;
Botello-Mendez, A. ;
Gillet, Y. ;
Elias, A. L. ;
Terrones, H. ;
Feng, S. ;
Fantini, C. ;
Rhodes, Daniel ;
Pradhan, N. ;
Balicas, L. ;
Gonze, X. ;
Charlier, J. -C. ;
Terrones, M. ;
Pimenta, M. A. .
NANO LETTERS, 2016, 16 (04) :2363-2368
[9]   Exciton-dominated optical response of ultra-narrow graphene nanoribbons [J].
Denk, Richard ;
Hohage, Michael ;
Zeppenfeld, Peter ;
Cai, Jinming ;
Pignedoli, Carlo A. ;
Soede, Hajo ;
Fasel, Roman ;
Feng, Xinliang ;
Muellen, Klaus ;
Wang, Shudong ;
Prezzi, Deborah ;
Ferretti, Andrea ;
Ruini, Alice ;
Molinari, Elisa ;
Ruffieux, Pascal .
NATURE COMMUNICATIONS, 2014, 5
[10]   Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects [J].
Eckmann, Axel ;
Felten, Alexandre ;
Verzhbitskiy, Ivan ;
Davey, Rebecca ;
Casiraghi, Cinzia .
PHYSICAL REVIEW B, 2013, 88 (03)