Fuzzy C-mean for unsupervised spectral-spatial SVM classification of hyperspectral images

被引:0
作者
Ben Salem, Rafika [1 ]
Hamdi, Mohamed Ali [1 ]
Ettabaa, Karim Saheb [2 ]
机构
[1] Natl Inst Appl Sci & Technol, Lab Mat Measurements & Applicat, Tunis, Tunisia
[2] Telecom Bretagne, Lab ITI, Technopole CS 81828, Brest Iroise, Tunisia
来源
2017 IEEE/ACS 14TH INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS (AICCSA) | 2017年
关键词
Hyperspectral images; FCM; Majority voting; interpolation methods; SVM; INFORMATION; PROFILES; KERNELS;
D O I
10.1109/AICCSA.2017.63
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
a new unsupervised spectral-spatial classification approach for hyperspectral images is proposed. The approach combines the results of various unsupervised spectral and spatial classification using majority voting to find the set of labeled samples and over-samples the obtained set to increase the number of learning examples. Fuzzy C-mean (FCM) is used for unsupervised classification and interpolation methods are applied for oversampling. The proposed method used the supervised classifier support vector machine (SVM) with multi-feature kernels to integrate the spatial and the spectral information. In this work, we presented each pixel by a spectral vector illustrating all the spectral information and two spatial vectors presenting textural features and attributes computed by Extended Multi-Attribute Profile (EMAP). Experiments are conducted on AVIRIS "Indian Pines" data set. It was found that the proposed method provided more accurate classification results than FCM and classification without oversampling.
引用
收藏
页码:759 / 765
页数:7
相关论文
共 21 条
  • [1] Ben Salem R, 2016, GRAPHICS VISION IMAG, V16, P31
  • [2] Classification of hyperspectral data from urban areas based on extended morphological profiles
    Benediktsson, JA
    Palmason, JA
    Sveinsson, JR
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2005, 43 (03): : 480 - 491
  • [3] Hyperspectral Remote Sensing Data Analysis and Future Challenges
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Camps-Valls, Gustavo
    Scheunders, Paul
    Nasrabadi, Nasser M.
    Chanussot, Jocelyn
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) : 6 - 36
  • [4] Composite kernels for hyperspectral image classification
    Camps-Valls, G
    Gomez-Chova, L
    Muñoz-Marí, J
    Vila-Francés, J
    Calpe-Maravilla, J
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2006, 3 (01) : 93 - 97
  • [5] Extended profiles with morphological attribute filters for the analysis of hyperspectral data
    Dalla Mura, Mauro
    Benediktsson, Jon Atli
    Waske, Bjoern
    Bruzzone, Lorenzo
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (22) : 5975 - 5991
  • [6] Semisupervised Self-Learning for Hyperspectral Image Classification
    Dopido, Inmaculada
    Li, Jun
    Marpu, Prashanth Reddy
    Plaza, Antonio
    Bioucas Dias, Jose M.
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (07): : 4032 - 4044
  • [7] Du Peijun, 2012, IEEE J SELECTED TOPI, V5
  • [8] Classification of Hyperspectral Images by Exploiting Spectral-Spatial Information of Superpixel via Multiple Kernels
    Fang, Leyuan
    Li, Shutao
    Duan, Wuhui
    Ren, Jinchang
    Benediktsson, Jon Atli
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (12): : 6663 - 6674
  • [9] Integration of Segmentation Techniques for Classification of Hyperspectral Images
    Ghamisi, Pedram
    Couceiro, Micael S.
    Fauvel, Mathieu
    Benediktsson, Jon Atli
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2014, 11 (01) : 342 - 346
  • [10] Huang X., 2013, IEEE T GEOSCIENCE RE, V51