Evaporation Induced Spontaneous Micro-Vortexes through Engineering of the Marangoni Flow

被引:24
作者
Cai, Zheren [1 ,2 ]
Huang, Zhandong [3 ]
Li, Zheng [1 ]
Su, Meng [1 ]
Zhao, Zhipeng [1 ,2 ]
Qin, Feifei [4 ]
Zhang, Zeying [1 ,2 ]
Yang, Jun [3 ]
Song, Yanlin [1 ,2 ]
机构
[1] Chinese Acad Sci ICCAS, Key Lab Green Printing, Inst Chem,Natl Lab Mol Sci BNLMS, Beijing Engn Res Ctr Nanomat Green Printing Techn, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Western Ontario, Dept Mech & Mat Engn, London, ON N6A 5B9, Canada
[4] ETH Zurich Swiss Fed Inst Technol Zurich, Chair Bldg Phys, Dept Mech & Proc Engn, CH-8092 Zurich, Switzerland
基金
中国国家自然科学基金;
关键词
Marangoni flow; microfluidics; particle manipulation; Stokes flow; vortex; MICROFLUIDICS; SEPARATION; PARTICLES; DRIVEN; MANIPULATION; ADSORPTION; CELLS;
D O I
10.1002/anie.202008477
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Vortex flow fields are widely used to manipulate objects at the microscale in microfluidics. Previous approaches to produce the vortex flow field mainly focused on inertia flows. It remains a challenge to create vortexes in Stokes flow regime. Here we reported an evaporation induced spontaneous vortex flow system in Stokes flow regime by engineering Marangoni flow in a micro-structured microfluidic chip. The Marangoni flow is created by nonuniform evaporation of surfactant solution. Various vortexes are constructed by folding the air-water interface via microstructures. Patterns of vortexes are programmable by designing the geometry of the microstructures and are predictable using numerical simulations. Moreover, rotation of micro-objects and enrichment of micro-particles using vortex flow is demonstrated. This approach to create vortexes will provide a promising platform for various microfluidic applications such as biological analysis, chemical synthesis, and nanomaterial assembly.
引用
收藏
页码:23684 / 23689
页数:6
相关论文
共 41 条
[1]   Rotational manipulation of single cells and organisms using acoustic waves [J].
Ahmed, Daniel ;
Ozcelik, Adem ;
Bojanala, Nagagireesh ;
Nama, Nitesh ;
Upadhyay, Awani ;
Chen, Yuchao ;
Hanna-Rose, Wendy ;
Huang, Tony Jun .
NATURE COMMUNICATIONS, 2016, 7
[2]   Acoustofluidic Chemical Waveform Generator and Switch [J].
Ahmed, Daniel ;
Muddana, Hari S. ;
Lu, Mengqian ;
French, Jarrod B. ;
Ozcelik, Adem ;
Fang, Ye ;
Butler, Peter J. ;
Benkovic, Stephen J. ;
Manz, Andreas ;
Huang, Tony Jun .
ANALYTICAL CHEMISTRY, 2014, 86 (23) :11803-11810
[3]   Tunable, pulsatile chemical gradient generation via acoustically driven oscillating bubbles [J].
Ahmed, Daniel ;
Chan, Chung Yu ;
Lin, Sz-Chin Steven ;
Muddana, Hari S. ;
Nama, Nitesh ;
Benkovic, Stephen J. ;
Huang, Tony Jun .
LAB ON A CHIP, 2013, 13 (03) :328-331
[4]   Universal scaling of active nematic turbulence [J].
Alert, Ricard ;
Joanny, Jean-Francois ;
Casademunt, Jaume .
NATURE PHYSICS, 2020, 16 (06) :682-+
[5]   Engineering fluid flow using sequenced microstructures [J].
Amini, Hamed ;
Sollier, Elodie ;
Masaeli, Mahdokht ;
Xie, Yu ;
Ganapathysubramanian, Baskar ;
Stone, Howard A. ;
Di Carlo, Dino .
NATURE COMMUNICATIONS, 2013, 4
[6]  
[Anonymous], 2015, ANGEW CHEM
[7]  
[Anonymous], 2018, ANGEW CHEM
[8]   Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics [J].
Arange, Yulieth ;
Temiz, Yuksel ;
Gokce, Onur ;
Delamarche, Emmanuel .
SCIENCE ADVANCES, 2020, 6 (16)
[9]   Controlled microfluidic interfaces [J].
Atencia, J ;
Beebe, DJ .
NATURE, 2005, 437 (7059) :648-655
[10]   Computational inertial microfluidics: a review [J].
Bazaz, Sajad Razavi ;
Mashhadian, Ali ;
Ehsani, Abbas ;
Saha, Suvash Chandra ;
Kruger, Timm ;
Warkiani, Majid Ebrahimi .
LAB ON A CHIP, 2020, 20 (06) :1023-1048