Catalysis for solar-driven chemistry: The role of electrocatalysis

被引:51
作者
Perathoner, Siglinda [1 ,2 ]
Centi, Gabriele [2 ,3 ]
机构
[1] Univ Messina, Dept ChiBioFarAm Ind Chem, ERIC Aisbl, I-98166 Messina, Italy
[2] CASPE INSTM, I-98166 Messina, Italy
[3] ERIC Aisbl, Dept MIFT Ind Chem, I-98166 Messina, Italy
关键词
Electrocatalysis; Solar-driven chemistry; NH3 direct synthesis; CO2 electrocatalytic reduction; HARVESTING RENEWABLE ENERGY; CARBON-DIOXIDE REDUCTION; ELECTROCHEMICAL REDUCTION; CO2; REDUCTION; NITROGEN-FIXATION; COPPER ELECTRODE; AMMONIA; HYDROGEN; ELECTROREDUCTION; CONVERSION;
D O I
10.1016/j.cattod.2018.03.005
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Solar-driven chemistry identifies the emerging area to enable the transition to a low-carbon and sustainable chemical production based on the use of renewable energy rather than on the utilization of fossil sources. This perspective paper analyzes the role of electrocatalysis as a crucial technology to enable this transition, by presenting selected examples, mainly around two key reactions (NH3 direct synthesis and CO2 electrocatalytic reaction), which evidence the role of electrocatalytic technologies to i) develop disruptive processes for the new solar-driven chemistry scenario, ii) create an innovative landscape, iii) push the development of ground-breaking catalysts and catalysis concepts, iv) realize process intensification, v) open new value chains, and vi) develop new reaction paths. Between the concepts emphasized are the realization of multi-electron transfer electrocatalysts, and the role of surface confinement in the electrocatalytic conversion. The need to move to a new design for the electrocatalytic cells and for electrocatalysts is also remarked.
引用
收藏
页码:157 / 170
页数:14
相关论文
共 133 条
[1]  
Abate Salvatore, 2015, Green, V5, P43, DOI 10.1515/green-2015-0011
[2]   Electrocatalytic conversion of CO2 to produce solar fuels in electrolyte or electrolyte-less configurations of PEC cells [J].
Ampelli, C. ;
Genovese, C. ;
Marepally, B. C. ;
Papanikolaou, G. ;
Perathoner, S. ;
Centi, G. .
FARADAY DISCUSSIONS, 2015, 183 :125-145
[3]   CO2 utilization: an enabling element to move to a resource- and energy-efficient chemical and fuel production [J].
Ampelli, Claudio ;
Perathoner, Siglinda ;
Centi, Gabriele .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 373 (2037)
[4]  
[Anonymous], P IJISEA ANN M NREL
[5]   Waste-to-Chemicals for a Circular Economy: The Case of Urea Production (Waste-to-Urea) [J].
Antonetti, Elena ;
Iaquaniello, Gaetano ;
Salladini, Annarita ;
Spadaccini, Luca ;
Perathoner, Siglinda ;
Centi, Gabriele .
CHEMSUSCHEM, 2017, 10 (05) :912-920
[6]   A monolithic device for CO2 photoreduction to generate liquid organic substances in a single-compartment reactor [J].
Arai, Takeo ;
Sato, Shunsuke ;
Morikawa, Takeshi .
ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (07) :1998-2002
[7]   Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid [J].
Asadi, Mohammad ;
Kim, Kibum ;
Liu, Cong ;
Addepalli, Aditya Venkata ;
Abbasi, Pedram ;
Yasaei, Poya ;
Phillips, Patrick ;
Behranginia, Amirhossein ;
Cerrato, Jose M. ;
Haasch, Richard ;
Zapol, Peter ;
Kumar, Bijandra ;
Klie, Robert F. ;
Abiade, Jeremiah ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
SCIENCE, 2016, 353 (6298) :467-470
[8]  
Bao D., 2016, ADV MATER, V29
[9]   Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle [J].
Bao, Di ;
Zhang, Qi ;
Meng, Fan-Lu ;
Zhong, Hai-Xia ;
Shi, Miao-Miao ;
Zhang, Yu ;
Yan, Jun-Min ;
Jiang, Qing ;
Zhang, Xin-Bo .
ADVANCED MATERIALS, 2017, 29 (03)
[10]   Trading Renewable Energy by using CO2: An Effective Option to Mitigate Climate Change and Increase the use of Renewable Energy Sources [J].
Barbato, Lucia ;
Centi, Gabriele ;
Iaquaniello, Gaetano ;
Mangiapane, Alessia ;
Perathoner, Siglinda .
ENERGY TECHNOLOGY, 2014, 2 (05) :453-461