Hochschild Cohomology Rings of Temperley-Lieb Algebras
被引:1
|
作者:
Li, Huanhuan
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ, Fac Math & Stat, Wuhan 430062, Peoples R China
Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R ChinaHubei Univ, Fac Math & Stat, Wuhan 430062, Peoples R China
Li, Huanhuan
[1
,2
]
Xu, Yunge
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ, Fac Math & Stat, Wuhan 430062, Peoples R ChinaHubei Univ, Fac Math & Stat, Wuhan 430062, Peoples R China
Xu, Yunge
[1
]
Chen, Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Hubei Univ, Fac Math & Stat, Wuhan 430062, Peoples R ChinaHubei Univ, Fac Math & Stat, Wuhan 430062, Peoples R China
Chen, Yuan
[1
]
机构:
[1] Hubei Univ, Fac Math & Stat, Wuhan 430062, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
The authors first construct an explicit minimal projective bimodule resolution (P, delta) of the Temperley-Lieb algebra A, and then apply it to calculate the Hochschild cohomology groups and the cup product of the Hochschild cohomology ring of A based on a comultiplicative map Delta : P -> P circle times(A) P. As a consequence, the authors determine the multiplicative structure of Hochschild cohomology rings of both Temperley-Lieb algebras and representation-finite q-Schur algebras under the cup product by giving an explicit presentation by generators and relations.