Hochschild Cohomology Rings of Temperley-Lieb Algebras

被引:1
|
作者
Li, Huanhuan [1 ,2 ]
Xu, Yunge [1 ]
Chen, Yuan [1 ]
机构
[1] Hubei Univ, Fac Math & Stat, Wuhan 430062, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Hochschild cohomology; Cup product; Temperley-Lieb algebra; q-Schur algebra; KOSZUL ALGEBRAS; RESOLUTIONS;
D O I
10.1007/s11401-015-0903-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors first construct an explicit minimal projective bimodule resolution (P, delta) of the Temperley-Lieb algebra A, and then apply it to calculate the Hochschild cohomology groups and the cup product of the Hochschild cohomology ring of A based on a comultiplicative map Delta : P -> P circle times(A) P. As a consequence, the authors determine the multiplicative structure of Hochschild cohomology rings of both Temperley-Lieb algebras and representation-finite q-Schur algebras under the cup product by giving an explicit presentation by generators and relations.
引用
收藏
页码:613 / 624
页数:12
相关论文
共 50 条
  • [1] Hochschild cohomology rings of Temperley-Lieb algebras
    Huanhuan Li
    Yunge Xu
    Yuan Chen
    Chinese Annals of Mathematics, Series B, 2015, 36 : 613 - 624
  • [2] Hochschild Cohomology Rings of Temperley-Lieb Algebras
    Huanhuan LI
    Yunge XU
    Yuan CHEN
    ChineseAnnalsofMathematics(SeriesB), 2015, 36 (04) : 613 - 624
  • [3] The Hochschild Cohomology Ring of Temperley-Lieb Algebras Revisited
    Lyu, Weiguo
    Wu, Yuling
    ALGEBRA COLLOQUIUM, 2020, 27 (04) : 669 - 686
  • [4] The homology of the Temperley-Lieb algebras
    Boyd, Rachael
    Hepworth, Richard
    GEOMETRY & TOPOLOGY, 2024, 28 (03) : 1437 - 1499
  • [5] PRESENTATIONS FOR TEMPERLEY-LIEB ALGEBRAS
    East, James
    QUARTERLY JOURNAL OF MATHEMATICS, 2021, 72 (04): : 1253 - 1269
  • [6] Monomials and Temperley-Lieb algebras
    Fan, CK
    Green, RM
    JOURNAL OF ALGEBRA, 1997, 190 (02) : 498 - 517
  • [7] On the affine Temperley-Lieb algebras
    Fan, CK
    Green, RM
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 60 : 366 - 380
  • [8] Affine Temperley-Lieb algebras
    Gnerre, S
    JOURNAL OF OPERATOR THEORY, 2000, 43 (01) : 35 - 42
  • [9] REPRESENTATIONS OF GRAPH TEMPERLEY-LIEB ALGEBRAS
    MARTIN, PP
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1990, 26 (03) : 485 - 503
  • [10] Standard Monomials for Temperley-Lieb Algebras
    Kim, SungSoon
    Lee, Dong-il
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2016, 50 (04): : 179 - 181