On Fibonacci functions with Fibonacci numbers

被引:9
|
作者
Han, Jeong Soon [1 ]
Kim, Hee Sik [2 ]
Neggers, Joseph [3 ]
机构
[1] Hanyang Univ, Dept Appl Math, Ahnsan 426791, South Korea
[2] Hanyang Univ, Dept Math, Res Inst Nat Sci, Seoul 133791, South Korea
[3] Univ Alabama, Dept Math, Tuscaloosa, AL 35487 USA
关键词
Fibonacci function; f-even (f-odd) function; Golden ratio;
D O I
10.1186/1687-1847-2012-126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider Fibonacci functions on the real numbers R, i.e., functions f : R -> R such that for all x is an element of R, f(x + 2) = f(x + 1) + f(x). We develop the notion of Fibonacci functions using the concept of f f-even and f-odd functions. Moreover, we show that if f is a Fibonacci function then lim(x ->infinity) f(x+1)/f(x) = 1+root 5/2.
引用
收藏
页数:7
相关论文
共 50 条