Correction of Population Stratification in Large Multi-Ethnic Association Studies

被引:53
作者
Serre, David [2 ]
Montpetit, Alexandre [2 ]
Pare, Guillaume [2 ]
Engert, James C. [3 ]
Yusuf, Salim [5 ]
Keavney, Bernard [6 ]
Hudson, Thomas J. [1 ]
Anand, Sonia [4 ]
机构
[1] Ontario Inst Canc Res, Toronto, ON, Canada
[2] McGill Univ, Genome Quebec Innovation Ctr, Montreal, PQ, Canada
[3] McGill Univ, Dept Med, Montreal, PQ, Canada
[4] McGill Univ, Dept Human Genet, Montreal, PQ, Canada
[5] McMaster Univ, Dept Med, Hamilton, ON, Canada
[6] Inst Human Genet, Newcastle Upon Tyne, Tyne & Wear, England
基金
加拿大健康研究院;
关键词
D O I
10.1371/journal.pone.0001382
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background. The vast majority of genetic risk factors for complex diseases have, taken individually, a small effect on the end phenotype. Population-based association studies therefore need very large sample sizes to detect significant differences between affected and non-affected individuals. Including thousands of affected individuals in a study requires recruitment in numerous centers, possibly from different geographic regions. Unfortunately such a recruitment strategy is likely to complicate the study design and to generate concerns regarding population stratification. Methodology/Principal Findings. We analyzed 9,751 individuals representing three main ethnic groups - Europeans, Arabs and South Asians - that had been enrolled from 154 centers involving 52 countries for a global case/control study of acute myocardial infarction. All individuals were genotyped at 103 candidate genes using 1,536 SNPs selected with a tagging strategy that captures most of the genetic diversity in different populations. We show that relying solely on self-reported ethnicity is not sufficient to exclude population stratification and we present additional methods to identify and correct for stratification. Conclusions/Significance. Our results highlight the importance of carefully addressing population stratification and of carefully "cleaning'' the sample prior to analyses to obtain stronger signals of association and to avoid spurious results.
引用
收藏
页数:11
相关论文
共 44 条
[31]   A genome-wide association study identifies novel risk loci for type 2 diabetes [J].
Sladek, Robert ;
Rocheleau, Ghislain ;
Rung, Johan ;
Dina, Christian ;
Shen, Lishuang ;
Serre, David ;
Boutin, Philippe ;
Vincent, Daniel ;
Belisle, Alexandre ;
Hadjadj, Samy ;
Balkau, Beverley ;
Heude, Barbara ;
Charpentier, Guillaume ;
Hudson, Thomas J. ;
Montpetit, Alexandre ;
Pshezhetsky, Alexey V. ;
Prentki, Marc ;
Posner, Barry I. ;
Balding, David J. ;
Meyre, David ;
Polychronakos, Constantin ;
Froguel, Philippe .
NATURE, 2007, 445 (7130) :881-885
[32]   Genetic Epidemiology 7 - Genetic epidemiology and public health: hope, hype, and future prospects [J].
Smith, GD ;
Ebrahim, S ;
Lewis, S ;
Hansell, AL ;
Palmer, LJ ;
Burton, PR .
LANCET, 2005, 366 (9495) :1484-1498
[33]   Genetic structure, self-identified race/ethnicity, and confounding in case-control association studies [J].
Tang, H ;
Quertermous, T ;
Rodriguez, B ;
Kardia, SLR ;
Zhu, XF ;
Brown, A ;
Pankow, JS ;
Province, MA ;
Hunt, SC ;
Boerwinkle, E ;
Schork, NJ ;
Risch, NJ .
AMERICAN JOURNAL OF HUMAN GENETICS, 2005, 76 (02) :268-275
[34]   CYP3A variation and the evolution of salt-sensitivity variants [J].
Thompson, EE ;
Kuttab-Boulos, H ;
Witonsky, D ;
Yang, L ;
Roe, BA ;
Di Rienzo, A .
AMERICAN JOURNAL OF HUMAN GENETICS, 2004, 75 (06) :1059-1069
[35]   Convergent adaptation of human lactase persistence in Africa and Europe [J].
Tishkoff, Sarah A. ;
Reed, Floyd A. ;
Ranciaro, Alessia ;
Voight, Benjamin F. ;
Babbitt, Courtney C. ;
Silverman, Jesse S. ;
Powell, Kweli ;
Mortensen, Holly M. ;
Hirbo, Jibril B. ;
Osman, Maha ;
Ibrahim, Muntaser ;
Omar, Sabah A. ;
Lema, Godfrey ;
Nyambo, Thomas B. ;
Ghori, Jilur ;
Bumpstead, Suzannah ;
Pritchard, Jonathan K. ;
Wray, Gregory A. ;
Deloukas, Panos .
NATURE GENETICS, 2007, 39 (01) :31-40
[36]   Confounding from cryptic relatedness in case-control association studies [J].
Voight, BF ;
Pritchard, JK .
PLOS GENETICS, 2005, 1 (03) :302-311
[37]   Population stratification in epidemiologic studies of common genetic variants and cancer: Quantification of bias [J].
Wacholder, S ;
Rothman, N ;
Caporaso, N .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2000, 92 (14) :1151-1158
[38]  
Wacholder S, 2002, CANCER EPIDEM BIOMAR, V11, P513
[39]   Genetic relatedness analysis: modern data and new challenges [J].
Weir, Bruce S. ;
Anderson, Amy D. ;
Hepler, Amanda B. .
NATURE REVIEWS GENETICS, 2006, 7 (10) :771-780
[40]  
Weir BS., 1996, GENETIC DATA ANAL