CHARACTERIZATIONS FOR TOTALLY GEODESIC SUBMANIFOLDS OF (κ, μ)-PARACONTACT METRIC MANIFOLDS

被引:6
作者
Atceken, Mehmet [1 ]
Uygun, Pakize [1 ]
机构
[1] Univ Gaziosmanpasa, Dept Math, TR-60100 Tokat, Turkey
来源
KOREAN JOURNAL OF MATHEMATICS | 2020年 / 28卷 / 03期
关键词
(kappa; mu)-paracontact metric manifold; pseudoparallel; Ricci-generalized pseudoparallel and 2-pseudoparallel submanifolds; INVARIANT SUBMANIFOLDS;
D O I
10.11568/kjm.2020.28.3.555
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the present paper is to study pseudoparallel invariant submanifold of a (kappa, mu)-paracontact metric manifold. We consider pseudoparallel, Ricci-generalized pseudoparallel and 2-Ricci generalized pseudo parallel invariant submanifolds of a (kappa, mu)-paracontact metric manifold and we obtain new results contribute to geometry.
引用
收藏
页码:555 / 571
页数:17
相关论文
共 12 条
  • [1] Semiparallel Submanifolds of a Normal Paracontact Metric Manifold
    Atceken, Mehmet
    Yildirim, Umit
    Dirik, Suleyman
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02): : 501 - 509
  • [2] CONTACT METRIC MANIFOLDS SATISFYING A NULLITY CONDITION
    BLAIR, DE
    KOUFOGIORGOS, T
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 1995, 91 (1-3) : 189 - 214
  • [3] Invariant submanifolds of contact (κ, μ)-manifolds
    Cappelletti Montano, Beniamino
    Di Terlizzi, Luigia
    Tripathi, Mukut Mani
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2008, 50 : 499 - 507
  • [4] Hui SK, 2018, ITAL J PURE APPL MAT, P359
  • [5] ALMOST PARACONTACT AND PARAHODGE STRUCTURES ON MANIFOLDS
    KANEYUKI, S
    WILLIAMS, FL
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1985, 99 (SEP) : 173 - 187
  • [6] Montano B. C., 2010, DIERFF GEOM APPL, V30, P79
  • [7] Prakasha D. G., 2014, GEN MATH NOTES, V25, P68
  • [8] Siddesha M. S., 2016, INT J MATH TRENDS TE, V34
  • [9] Sular S, 2010, HACET J MATH STAT, V39, P535
  • [10] Venkatesha V., 2020, KHAYYAM J MATH, V6, P16