Deciphering the structural framework of glycine receptor anchoring by gephyrin

被引:99
作者
Kim, EY
Schrader, N
Smolinsky, B
Bedet, C
Vannier, C
Schwarz, G [1 ]
Schindelin, H
机构
[1] SUNY Stony Brook, Ctr Struct Biol, Dept Biochem, Stony Brook, NY 11794 USA
[2] Tech Univ Carolo Wilhelmina Braunschweig, Dept Plant Biol, D-3300 Braunschweig, Germany
[3] Univ Cologne, Inst Biochem, Cologne, Germany
[4] Ecole Normale Super, INSERM, Lab Biol Cellulaire Synapse Normal & Pathol, F-75231 Paris, France
[5] Univ Wurzburg, Rudolf Virchow Ctr Expt Biomed, Wurzburg, Germany
[6] Univ Wurzburg, Inst Struct Biol, Wurzburg, Germany
关键词
gephyrin; glycine receptor; neuroreceptor anchoring; postsynaptic membrane; X-ray crystallography;
D O I
10.1038/sj.emboj.7601029
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Glycine is the major inhibitory neurotransmitter in the spinal cord and brain stem. Gephyrin is required to achieve a high concentration of glycine receptors (GlyRs) in the postsynaptic membrane, which is crucial for efficient glycinergic signal transduction. The interaction between gephyrin and the GlyR involves the E-domain of gephyrin and a cytoplasmic loop located between transmembrane segments three and four of the GlyR beta subunit. Here, we present crystal structures of the gephyrin E-domain with and without the GlyR beta-loop at 2.4 and 2.7 angstrom resolutions, respectively. The GlyR beta-loop is bound in a symmetric 'key and lock' fashion to each E-domain monomer in a pocket adjacent to the dimer interface. Structure-guided mutagenesis followed by in vitro binding and in vivo colocalization assays demonstrate that a hydrophobic interaction formed by Phe 330 of gephyrin and Phe 398 and Ile 400 of the GlyR beta-loop is crucial for binding.
引用
收藏
页码:1385 / 1395
页数:11
相关论文
共 43 条
[1]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[2]   Density modification for macromolecular phase improvement [J].
Cowtan, KD ;
Zhang, KYJ .
PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 1999, 72 (03) :245-270
[3]   Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity [J].
Feng, GP ;
Tintrup, H ;
Kirsch, J ;
Nichol, MC ;
Kuhse, J ;
Betz, H ;
Sanes, JR .
SCIENCE, 1998, 282 (5392) :1321-1324
[4]  
Fuhrmann JC, 2002, J NEUROSCI, V22, P5393
[5]  
Giesemann T, 2003, J NEUROSCI, V23, P8330
[6]   The β subunit determines the ligand binding properties of synaptic glycine receptors [J].
Grudzinska, J ;
Schemm, R ;
Haeger, S ;
Nicke, A ;
Schmalzing, G ;
Betz, H ;
Laube, B .
NEURON, 2005, 45 (05) :727-739
[7]  
Hauptman HA, 1997, METHOD ENZYMOL, V277, P3, DOI 10.1016/S0076-6879(97)77003-4
[8]  
Hutchinson EG, 1996, PROTEIN SCI, V5, P212
[9]   IMPROVED METHODS FOR BUILDING PROTEIN MODELS IN ELECTRON-DENSITY MAPS AND THE LOCATION OF ERRORS IN THESE MODELS [J].
JONES, TA ;
ZOU, JY ;
COWAN, SW ;
KJELDGAARD, M .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :110-119
[10]   Collybistin, a newly identified brain-specific GEF, induces submembrane clustering of gephyrin [J].
Kins, S ;
Betz, H ;
Kirsch, J .
NATURE NEUROSCIENCE, 2000, 3 (01) :22-29