Finger-vein Recognition using Deep Fully Convolutional Neural Semantic Segmentation Networks: The Impact of Training Data

被引:0
作者
Jalilian, Ehsaneddin [1 ]
Uhl, Andreas [1 ]
机构
[1] Univ Salzburg, Dept Comp Sci, Jakob Haringer Str 2, Salzburg, Austria
来源
2018 10TH IEEE INTERNATIONAL WORKSHOP ON INFORMATION FORENSICS AND SECURITY (WIFS) | 2018年
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a novel approach for finger-vein recognition, focused on direct extraction of actual finger-vein patterns from NIR finger images without any specific pre- or post-processing, using semantic segmentation convolutional neural networks (CNNs). We utilize three network architectures and besides identifying efficient training and configuration settings for these networks, using manually annotated training data, we present a training model based on automatically generated labels to improve the networks' performance. Based on our experimental results, the proposed model can achieve superior performance over traditional finger-vein recognition algorithms. As further contribution, we also release human annotated ground-truth vein pixel labels (required for training the networks) for a subset of two well known finger-vein databases used in this work, and a corresponding tool for further annotations.
引用
收藏
页数:8
相关论文
共 50 条
[41]   Segmentation of Coring Images using Fully Convolutional Neural Networks [J].
Fazekas, Szilard Zsolt ;
Obrochta, Stephen ;
Sato, Tatsuhiko ;
Yamamura, Akihiro .
2017 9TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2017,
[42]   Enhanced Segmentation-CNN based Finger-Vein Recognition by Joint Training with Automatically Generated and Manual Labels [J].
Jalilian, Ehsaneddin ;
Uhl, Andreas .
2019 5TH IEEE INTERNATIONAL CONFERENCE ON IDENTITY, SECURITY, AND BEHAVIOR ANALYSIS (ISBA 2019), 2019,
[43]   Semantic Segmentation of Hyperspectral Imaging Using Convolutional Neural Networks [J].
A. Mukhin ;
G. Danil ;
R. Paringer .
Optical Memory and Neural Networks, 2022, 31 :38-47
[44]   Semantic Segmentation of Vineyard Images Using Convolutional Neural Networks [J].
Kalampokas, Theofanis ;
Tziridis, Konstantinos ;
Nikolaou, Alexandros ;
Vrochidou, Eleni ;
Papakostas, George A. ;
Pachidis, Theodore ;
Kaburlasos, Vassilis G. .
PROCEEDINGS OF THE 21ST ENGINEERING APPLICATIONS OF NEURAL NETWORKS CONFERENCE, EANN 2020, 2020, 2 :292-303
[45]   Semantic segmentation of anomalous diffusion using deep convolutional networks [J].
Qu, Xiang ;
Hu, Yi ;
Cai, Wenjie ;
Xu, Yang ;
Ke, Hu ;
Zhu, Guolong ;
Huang, Zihan .
PHYSICAL REVIEW RESEARCH, 2024, 6 (01)
[46]   DOMAIN ADAPTATION FOR SEMANTIC SEGMENTATION USING CONVOLUTIONAL NEURAL NETWORKS [J].
Schenkel, Fabian ;
Middelmann, Wolfgang .
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, :728-731
[47]   Semantic Segmentation of Hyperspectral Imaging Using Convolutional Neural Networks [J].
Mukhin, A. ;
Danil, G. ;
Paringer, R. .
OPTICAL MEMORY AND NEURAL NETWORKS, 2022, 31 (SUPPL 1) :38-47
[48]   Semantic segmentation of mouse jaws using convolutional neural networks [J].
Cooley, Victoria ;
Stock, Stuart R. ;
Guise, William ;
Verma, Adya ;
Wald, Tomas ;
Klein, Ophir ;
Joester, Derk .
DEVELOPMENTS IN X-RAY TOMOGRAPHY XIII, 2021, 11840
[49]   Domain Transfer for Semantic Segmentation of LiDAR Data using Deep Neural Networks [J].
Langer, Ferdinand ;
Milioto, Andres ;
Haag, Alexandre ;
Behley, Jens ;
Stachniss, Cyrill .
2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, :8263-8270
[50]   Automatic Deep Learning Semantic Segmentation of Ultrasound Thyroid Cineclips Using Recurrent Fully Convolutional Networks [J].
Webb, Jeremy M. ;
Meixner, Duane D. ;
Adusei, Shaheeda A. ;
Polley, Eric C. ;
Fatemi, Mostafa ;
Alizad, Azra .
IEEE ACCESS, 2021, 9 (09) :5119-5127