Using natural language processing to identify problem usage of prescription opioids

被引:88
作者
Carrell, David S. [1 ]
Cronkite, David [1 ]
Palmer, Roy E. [2 ]
Saunders, Kathleen [1 ]
Gross, David E. [2 ]
Masters, Elizabeth T. [3 ]
Hylan, Timothy R. [2 ]
Von Korff, Michael [1 ]
机构
[1] Grp Hlth Res Inst, Seattle, WA 98101 USA
[2] Pfizer Inc, Global Innovat Pharma, North Amer Med Affairs, New York, NY USA
[3] Pfizer Inc, Global Hlth & Value, Outcomes & Evidence, New York, NY USA
关键词
Natural language processing; Computer-assisted records review; Opioid-related disorders; Surveillance; ELECTRONIC HEALTH RECORDS; CLINICAL NOTES; UNITED-STATES; TEXT ANALYSIS; IDENTIFICATION; THERAPY; DEPENDENCE; SYSTEM; MISUSE;
D O I
10.1016/j.ijmedinf.2015.09.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Background: Accurate and scalable surveillance methods are critical to understand widespread problems associated with misuse and abuse of prescription opioids and for implementing effective prevention and control measures. Traditional diagnostic coding incompletely documents problem use. Relevant information for each patient is often obscured in vast amounts of clinical text. Objectives: We developed and evaluated a method that combines natural language processing (NLP) and computer-assisted manual review of clinical notes to identify evidence of problem opioid use in electronic health records (EHRs). Methods: We used the EHR data and text of 22,142 patients receiving chronic opioid therapy (>= 70 days' supply of opioids per calendar quarter) during 2006-2012 to develop and evaluate an NLP-based surveillance method and compare it to traditional methods based on International Classification of Disease, Ninth Edition (ICD-9) codes. We developed a 1288-term dictionary for clinician mentions of opioid addiction, abuse, misuse or overuse, and an NLP system to identify these mentions in unstructured text. The system distinguished affirmative mentions from those that were negated or otherwise qualified. We applied this system to 7336,445 electronic chart notes of the 22,142 patients. Trained abstractors using a custom computer-assisted software interface manually reviewed 7751 chart notes (from 3156 patients) selected by the NLP system and classified each note as to whether or not it contained textual evidence of problem opioid use. Results: Traditional diagnostic codes for problem opioid use were found for 2240 (10.1%) patients. NLP-assisted manual review identified an additional 728 (3.1%) patients with evidence of clinically diagnosed problem opioid use in clinical notes. Inter-rater reliability among pairs of abstractors reviewing notes was high, with kappa = 0.86 and 97% agreement for one pair, and kappa = 0.71 and 88% agreement for another pair. Conclusions: Scalable, semi-automated NLP methods can efficiently and accurately identify evidence of problem opioid use in vast amounts of EHR text. Incorporating such methods into surveillance efforts may increase prevalence estimates by as much as one-third relative to traditional methods. (C) 2015 Published by Elsevier Ireland Ltd.
引用
收藏
页码:1057 / 1064
页数:8
相关论文
共 41 条
[1]  
[Anonymous], 2012, PEDIAT BIOMEDICAL IN
[2]  
[Anonymous], 2011, EP RESP AM PRESCR DR
[3]  
[Anonymous], 2013 SPEC FEAT PRESC
[4]   Societal Costs of Prescription Opioid Abuse, Dependence, and Misuse in the United States [J].
Birnbaum, Howard G. ;
White, Alan G. ;
Schiller, Matt ;
Waldman, Tracy ;
Cleveland, Jody M. ;
Roland, Carl L. .
PAIN MEDICINE, 2011, 12 (04) :657-667
[5]   Risk factors for drug dependence among out-patients on opioid therapy in a large US health-care system [J].
Boscarino, Joseph A. ;
Rukstalis, Margaret ;
Hoffman, Stuart N. ;
Han, John J. ;
Erlich, Porat M. ;
Gerhard, Glenn S. ;
Stewart, Walter F. .
ADDICTION, 2010, 105 (10) :1776-1782
[6]   Automatic identification of heart failure diagnostic criteria, using text analysis of clinical notes from electronic health records [J].
Byrd, Roy J. ;
Steinhubl, Steven R. ;
Sun, Jimeng ;
Ebadollahi, Shahram ;
Stewart, Walter F. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2014, 83 (12) :983-992
[7]  
Carrell D., 2011, AM ANN S WASH DC
[8]  
Carrell D.S., 2013, AM J EPIDEM IN PRESS
[9]   A simple algorithm for identifying negated findings and diseases in discharge summaries [J].
Chapman, WW ;
Bridewell, W ;
Hanbury, P ;
Cooper, GF ;
Buchanan, BG .
JOURNAL OF BIOMEDICAL INFORMATICS, 2001, 34 (05) :301-310
[10]   Opioids for Chronic Noncancer Pain: Prediction and Identification of Aberrant Drug-Related Behaviors: A Review of the Evidence for an American Pain Society and American Academy of Pain Medicine Clinical Practice Guideline [J].
Chou, Roger ;
Fanciullo, Gilbert J. ;
Fine, Perry G. ;
Miaskowski, Christine ;
Passik, Steven D. ;
Portenoy, Russell K. .
JOURNAL OF PAIN, 2009, 10 (02) :131-146