Mean values connected with the Dedekind zeta-function of a non-normal cubic field

被引:16
作者
Lue, Guangshi [1 ]
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Shandong, Peoples R China
来源
CENTRAL EUROPEAN JOURNAL OF MATHEMATICS | 2013年 / 11卷 / 02期
基金
中国国家自然科学基金;
关键词
Cusp form; Number field; Dedekind zeta function; SYMMETRIC POWERS; NUMBER-FIELDS; CUSP FORMS; IDEALS; GL(2); FUNCTORIALITY; SQUARE;
D O I
10.2478/s11533-012-0133-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
After Landau's famous work, many authors contributed to some mean values connected with the Dedekind zeta-function. In this paper, we are interested in the integral power sums of the coefficients of the Dedekind zeta function of a non-normal cubic extension K-3/Q, i.e. S-l,S-K3(x) = Sigma(m <= x) M-l(m), where M(m) denotes the number of integral ideals of the field K-3 of norm m and l is an element of N. We improve the previous results for S-2,S-K3(x) and S-3,S-K3(x).
引用
收藏
页码:274 / 282
页数:9
相关论文
共 22 条
[1]  
Cassels J. W. S., 1967, Algebraic number theory
[2]   ON THE NUMBER OF INTEGRAL IDEALS IN GALOIS EXTENSIONS [J].
CHANDRASEKHARAN, K ;
GOOD, A .
MONATSHEFTE FUR MATHEMATIK, 1983, 95 (02) :99-109
[3]   THE APPROXIMATE FUNCTIONAL EQUATION FOR A CLASS OF ZETA-FUNCTIONS [J].
CHANDRASEKHARAN, K ;
NARASIMHAN, R .
MATHEMATISCHE ANNALEN, 1963, 152 (01) :30-64
[4]  
DELIGNE P, 1974, ANN SCI ECOLE NORM S, V7, P507
[5]  
Fomenko OM., 2008, J. Math. Sci. (N.Y.), V150, P2115, DOI [10.1007/s10958-008-0126-9, DOI 10.1007/S10958-008-0126-9]
[6]  
GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471
[7]   THE SQUARE MEAN OF DIRICHLET SERIES ASSOCIATED WITH CUSP FORMS [J].
GOOD, A .
MATHEMATIKA, 1982, 29 (58) :278-295
[8]   The number of ideals in a quadratic field, II [J].
Huxley, MN ;
Watt, N .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (1) :125-153
[9]  
Iwaniec H., 2004, AMS C PUBLICATIONS, V53
[10]  
Jutila M., 1987, Tata Inst. Fund. Res. Lect. Math, V80