Uncertainty analysis for absorption and first-derivative electron paramagnetic resonance spectra

被引:20
作者
Tseitlin, Mark [1 ]
Eaton, Sandra S. [1 ]
Eaton, Gareth R. [1 ]
机构
[1] Univ Denver, Dept Chem & Biochem, Denver, CO 80208 USA
基金
美国国家科学基金会;
关键词
EPR; line width; integrated intensity; uncertainty analysis; RAPID-SCAN EPR;
D O I
10.1002/cmr.a.21248
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Electron paramagnetic resonance experimental techniques produce absorption or first-derivative spectra. Uncertainty analysis provides the basis for comparison of spectra obtained by different methods. In this study, it was used to derive analytical equations to relate uncertainties for integrated intensity and line widths obtained from absorption or first-derivative spectra to the signal-to-noise ratio (SNR), with the assumption of white noise. Predicted uncertainties for integrated intensities and line widths are in good agreement with Monte-Carlo calculations for Lorentzian and Gaussian lineshapes. Conservative low-pass filtering changes the noise spectrum, which can be modeled in the Monte-Carlo simulations. When noise is close to white, the analytical equations provide useful estimates of uncertainties. For example, for a Lorentzian line with white noise, the uncertainty in the number of spins obtained from the first-derivative spectrum is 2.6 times greater than from the absorption spectrum at the same SNR. Uncertainties in line widths obtained from absorption and first-derivative spectra are similar. The impact of integration or differentiation on SNR and on uncertainties in fitting parameters was analyzed. Although integration of the first-derivative spectrum improves the apparent smoothness of the spectrum, it also changes the frequency distribution of the noise. If the lineshape of the signal is known, the integrated intensity can be determined more accurately by fitting the first-derivative spectrum than by first integrating and then fitting the absorption spectrum. Uncertainties in integrated intensities and line widths are less when the parameters are determined from the original data than from spectra that have been either integrated or differentiated. (c) 2012 Wiley Periodicals, Inc. Concepts Magn Reson Part A 40A: 295305, 2012.
引用
收藏
页码:295 / 305
页数:11
相关论文
共 50 条
[31]   ELECTRON-PARAMAGNETIC-RESONANCE SPECTRA OF CHROMIUM(III) IN TITANIUM-DIOXIDE POLYMORPHS - EXACT ANALYSIS AND SIMULATION BY THE ISOTIMIC METHOD [J].
BELTRAN, V ;
TOVANY, LG ;
MILE, B ;
ROWLANDS, CC .
MAGNETIC RESONANCE IN CHEMISTRY, 1995, 33 (06) :417-420
[32]   A study of electron paramagnetic resonance and optical absorption in calcium chromium phosphate glasses containing praseodymium [J].
Chakradhar, RPS ;
Murali, A ;
Rao, JL .
JOURNAL OF ALLOYS AND COMPOUNDS, 1998, 281 (02) :99-107
[33]   Electron Paramagnetic Resonance and Optical Absorption of Yellow Anatase TiO2 Single Crystal [J].
Sekiya, Takao ;
Kamiya, Nozomi ;
Ohya, Shohei ;
Kurita, Susumu ;
Kodaira, Tetsuya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 (11)
[34]   Analysis of the Osseointegration Process of Dental Implants by Electron Paramagnetic Resonance: An In Vivo Study [J].
Kalinnikova, Elena ;
Sadovnikova, Margarita ;
Rodionov, Alexander ;
Murzakhanov, Fadis ;
Grishin, Peter .
DENTISTRY JOURNAL, 2022, 10 (02)
[35]   Finite size effects in ZnO nanoparticles: An electron paramagnetic resonance (EPR) analysis [J].
Jakes, Peter ;
Erdem, Emre .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2011, 5 (02) :56-58
[36]   Electron Paramagnetic Resonance and Optical Absorption Studies on Copper Ions in Mixed Alkali Cadmium Phosphate Glasses [J].
Giridhar, G. ;
Rangacharyulu, M. ;
Ravikumar, R. V. S. S. N. ;
Rao, P. Sambasiva .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2009, 25 (04) :531-534
[37]   Electron Paramagnetic Resonance and Optical Absorption of VO2+ Doped Ammonium Selenate Single Crystals [J].
Kripal, Ram ;
Shukla, Ashutosh Kumar .
CHINESE PHYSICS LETTERS, 2011, 28 (03)
[38]   Study of the electron paramagnetic resonance spectra of Zn(antipyrine)2(NO3)2:VO2+ [J].
Xie Lin-Hua ;
Zhao Guo-Ping ;
Qiu Min .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2010, 322 (15) :2184-2186
[39]   Analysis of different vanadium charge states in vanadium doped 6H-SiC by low temperature optical absorption and electron paramagnetic resonance [J].
Bickermann, M ;
Irmscher, K ;
Epelbaum, BM ;
Winnacker, A .
SILICON CARBIDE AND RELATED MATERIALS 2003, PRTS 1 AND 2, 2004, 457-460 :787-790
[40]   Radiation induced defects in timolol: temperature dependent electron paramagnetic resonance spectroscopy analysis [J].
Dicle Erdamar, Isik Yesim .
RADIATION EFFECTS AND DEFECTS IN SOLIDS, 2020, 175 (9-10) :892-897