End-to-End Velocity Estimation for Autonomous Racing

被引:21
|
作者
Srinivasan, Sirish [1 ]
Sa, Inkyu [2 ]
Zyner, Alex [1 ]
Reijgwart, Victor [1 ]
Valls, Miguel I. [3 ]
Siegwart, Roland [1 ]
机构
[1] Swiss Fed Inst Technol, Autonomous Syst Lab, CH-8092 Zurich, Switzerland
[2] CSIRO, Robot & Autonomous Syst Grp, Pullenvale, Qld 4069, Australia
[3] Sevensense Robot AG, CH-8006 Zurich, Switzerland
关键词
Field robots; autonomous vehicle navigation; sensor fusion; STATE ESTIMATION;
D O I
10.1109/LRA.2020.3016929
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Velocity estimation plays a central role in driverless vehicles, but standard, and affordable methods struggle to cope with extreme scenarios like aggressive maneuvers due to the presence of high sideslip. To solve this, autonomous race cars are usually equipped with expensive external velocity sensors. In this letter, we present an end-to-end recurrent neural network that takes available raw sensors as input (IMU, wheel odometry, and motor currents), and outputs velocity estimates. The results are compared to two state-of-the-art Kalman filters, which respectively include, and exclude expensive velocity sensors. All methods have been extensively tested on a formula student driverless race car with very high sideslip (10 degrees at the rear axle), and slip ratio (approximate to 20%), operating close to the limits of handling. The proposed network is able to estimate lateral velocity up to 15x better than the Kalman filter with the equivalent sensor input, and matches (0.06 m/s RMSE) the Kalman filter with the expensive velocity sensor setup.
引用
收藏
页码:6869 / 6875
页数:7
相关论文
共 50 条
  • [21] Accurate Mapping and Planning for Autonomous Racing
    Andresen, Leiv
    Brandemuehl, Adrian
    Hoenger, Alex
    Kuan, Benson
    Voedisch, Niclas
    Blum, Hermann
    Reijgwart, Victor
    Bernreiter, Lukas
    Schaupp, Lukas
    Chung, Jen Jen
    Buerki, Mathias
    Oswald, Martin R.
    Siegwart, Roland
    Gawel, Abel
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 4743 - 4749
  • [22] Learning-based model predictive control with moving horizon state estimation for autonomous racing
    Kebbati, Yassine
    Rauh, Andreas
    Ait-Oufroukh, Naima
    Ichalal, Dalil
    Vigneron, Vincent
    INTERNATIONAL JOURNAL OF CONTROL, 2024,
  • [23] Learned Inertial Odometry for Autonomous Drone Racing
    Cioffi, Giovanni
    Bauersfeld, Leonard
    Kaufmann, Elia
    Scaramuzza, Davide
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (05) : 2684 - 2691
  • [24] 2D Estimation of Velocity Relative to Water and Tidal Currents Based on Differential Pressure for Autonomous Underwater Vehicles
    Meurer, Christian
    Fuentes-Perez, Juan Francisco
    Schwarzwalder, Kordula
    Ludvigsen, Martin
    Sorensen, Asgeir Johan
    Kruusmaa, Maarja
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) : 3444 - 3451
  • [25] S.T.A.R.-Track: Latent Motion Models for End-to-End 3D Object Tracking With Adaptive Spatio-Temporal Appearance Representations
    Doll, Simon
    Hanselmann, Niklas
    Schneider, Lukas
    Schulz, Richard
    Enzweiler, Markus
    Lensch, Hendrik P. A.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (02) : 1326 - 1333
  • [26] The Autonomous Racing Software Stack of the KIT19d
    Nekkah, Sherif
    Janus, Josua
    Boxheimer, Mario
    Ohnemus, Lars
    Hirsch, Stefan
    Schmidt, Benjamin
    Liu, Yuchen
    Borbely, David
    Keck, Florian
    Bachmann, Katharina
    Bleszynski, Lukasz
    SAE INTERNATIONAL JOURNAL OF CONNECTED AND AUTOMATED VEHICLES, 2022, 5 (01): : 73 - 86
  • [27] Fast-Racing: An Open-Source Strong Baseline for SE(3) Planning in Autonomous Drone Racing
    Han, Zhichao
    Wang, Zhepei
    Pan, Neng
    Lin, Yi
    Xu, Chao
    Gao, Fei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04) : 8631 - 8638
  • [28] Efficient Optical Flow and Stereo Vision for Velocity Estimation and Obstacle Avoidance on an Autonomous Pocket Drone
    McGuire, Kimberly
    de Croon, Guido
    De Wagter, Christophe
    Tuyls, Karl
    Kappen, Hilbert
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2017, 2 (02): : 1070 - 1076
  • [29] Multi-Modal Sensor Fusion and Object Tracking for Autonomous Racing
    Karle, Phillip
    Fent, Felix
    Huch, Sebastian
    Sauerbeck, Florian
    Lienkamp, Markus
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2023, 8 (07): : 3871 - 3883
  • [30] Adaptive relative velocity estimation algorithm for autonomous mobile robots using the measurements on acceleration and relative distance
    Safaei, Ali
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2020, 34 (03) : 372 - 388