The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing

被引:134
作者
Cieslik, Marcin [1 ]
Chugh, Rashmi [2 ]
Wu, Yi-Mi [1 ]
Wu, Ming [1 ,3 ]
Brennan, Christine [1 ]
Lonigro, Robert [1 ]
Su, Fengyun [1 ]
Wang, Rui [1 ]
Siddiqui, Javed [1 ]
Mehra, Rohit [1 ]
Cao, Xuhong [1 ,3 ]
Lucas, David [4 ]
Chinnaiyan, Arul M. [1 ,3 ,4 ,5 ,6 ]
Robinson, Dan [1 ]
机构
[1] Univ Michigan, Michigan Ctr Translat Pathol, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Internal Med, Sch Med, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Howard Hughes Med Inst, Sch Med, Ann Arbor, MI 48109 USA
[4] Univ Michigan, Dept Pathol, Sch Med, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Ctr Comprehens Canc, Sch Med, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Urol, Sch Med, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
EXPRESSION ANALYSIS; LOW-INPUT; GENE; MICROARRAY; IDENTIFICATION; QUALITY; FUSION; TUMOR; CLASSIFICATION; DEGRADATION;
D O I
10.1101/gr.189621.115
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA-seq by poly(A) selection is currently the most common protocol for whole transcriptome sequencing as it provides a broad, detailed, and accurate view of the RNA landscape. Unfortunately, the utility of poly(A) libraries is greatly limited when the input RNA is degraded, which is the norm for research tissues and clinical samples, especially when specimens are formalin-fixed. To facilitate the use of RNA sequencing beyond cell lines and in the clinical setting, we developed an exome-capture transcriptome protocol with greatly improved performance on degraded RNA. Capture transcriptome libraries enable measuring absolute and differential gene expression, calling genetic variants, and detecting gene fusions. Through validation against gold-standard poly(A) and Ribo-Zero libraries from intact RNA, we show that capture RNA-seq provides accurate and unbiased estimates of RNA abundance, uniform transcript coverage, and broad dynamic range. Unlike poly(A) selection and Ribo-Zero depletion, capture libraries retain these qualities regardless of RNA quality and provide excellent data from clinical specimens including formalin-fixed paraffin-embedded (FFPE) blocks. Systematic improvements across key applications of RNA-seq are shown on a cohort of prostate cancer patients and a set of clinical FFPE samples. Further, we demonstrate the utility of capture RNA-seq libraries in a patient with a highly malignant solitary fibrous tumor (SFT) enrolled in our clinical sequencing program called MI-ONCOSEQ. Capture transcriptome profiling from FFPE revealed two oncogenic fusions: the pathognomonic NAB2-STAT6 inversion and a therapeutically actionable BRAF fusion, which may drive this specific cancer's aggressive phenotype.
引用
收藏
页码:1372 / 1381
页数:10
相关论文
共 60 条
[1]   Comparative analysis of RNA sequencing methods for degraded or low-input samples [J].
Adiconis, Xian ;
Borges-Rivera, Diego ;
Satija, Rahul ;
DeLuca, David S. ;
Busby, Michele A. ;
Berlin, Aaron M. ;
Sivachenko, Andrey ;
Thompson, Dawn Anne ;
Wysoker, Alec ;
Fennell, Timothy ;
Gnirke, Andreas ;
Pochet, Nathalie ;
Regev, Aviv ;
Levin, Joshua Z. .
NATURE METHODS, 2013, 10 (07) :623-+
[2]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[3]  
[Anonymous], CURRENT PROTOCOLS BI
[4]   MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia [J].
Armstrong, SA ;
Staunton, JE ;
Silverman, LB ;
Pieters, R ;
de Boer, ML ;
Minden, MD ;
Sallan, SE ;
Lander, ES ;
Golub, TR ;
Korsmeyer, SJ .
NATURE GENETICS, 2002, 30 (01) :41-47
[5]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[6]   cDNA Hybrid Capture Improves Transcriptome Analysis on Low-Input and Archived Samples [J].
Cabanski, Christopher R. ;
Magrini, Vincent ;
Griffith, Malachi ;
Griffith, Obi L. ;
McGrath, Sean ;
Zhang, Jin ;
Walker, Jason ;
Ly, Amy ;
Demeter, Ryan ;
Fulton, Robert S. ;
Pong, Winnie W. ;
Gutmann, David H. ;
Govindan, Ramaswamy ;
Mardis, Elaine R. ;
Maher, Christopher A. .
JOURNAL OF MOLECULAR DIAGNOSTICS, 2014, 16 (04) :440-451
[7]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[8]   Genetic diagnosis by whole exome capture and massively parallel DNA sequencing [J].
Choi, Murim ;
Scholl, Ute I. ;
Ji, Weizhen ;
Liu, Tiewen ;
Tikhonova, Irina R. ;
Zumbo, Paul ;
Nayir, Ahmet ;
Bakkaloglu, Aysin ;
Ozen, Seza ;
Sanjad, Sami ;
Nelson-Williams, Carol ;
Farhi, Anita ;
Mane, Shrikant ;
Lifton, Richard P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (45) :19096-19101
[9]   A comparison between ribo-minus RNA-sequencing and polyA-selected RNA-sequencing [J].
Cui, Peng ;
Lin, Qiang ;
Ding, Feng ;
Xin, Chengqi ;
Gong, Wei ;
Zhang, Lingfang ;
Geng, Jianing ;
Zhang, Bing ;
Yu, Xiaomin ;
Yang, Jin ;
Hu, Songnian ;
Yu, Jun .
GENOMICS, 2010, 96 (05) :259-265
[10]   A framework for variation discovery and genotyping using next-generation DNA sequencing data [J].
DePristo, Mark A. ;
Banks, Eric ;
Poplin, Ryan ;
Garimella, Kiran V. ;
Maguire, Jared R. ;
Hartl, Christopher ;
Philippakis, Anthony A. ;
del Angel, Guillermo ;
Rivas, Manuel A. ;
Hanna, Matt ;
McKenna, Aaron ;
Fennell, Tim J. ;
Kernytsky, Andrew M. ;
Sivachenko, Andrey Y. ;
Cibulskis, Kristian ;
Gabriel, Stacey B. ;
Altshuler, David ;
Daly, Mark J. .
NATURE GENETICS, 2011, 43 (05) :491-+