Semi-supervised K-Means Clustering by Optimizing Initial Cluster Centers

被引:0
|
作者
Wang, Xin [1 ]
Wang, Chaofei [2 ]
Shen, Junyi [1 ]
机构
[1] Xi An Jiao Tong Univ, Dept Elect & Informat Engn, Xian 710049, Peoples R China
[2] China Def Sci & Technol Informat Ctr, Beijing 100142, Peoples R China
来源
WEB INFORMATION SYSTEMS AND MINING, PT II | 2011年 / 6988卷
关键词
semi-supervised clustering; k-means; initial cluster centers; max-distance search;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised clustering uses a small amount of labeled data to aid and bias the clustering of unlabeled data. This paper explores the usage of labeled data to generate and optimize initial cluster centers for k-means algorithm. It proposes a max-distance search approach in order to find some optimal initial cluster centers from unlabeled data, especially when labeled data can't provide enough initial cluster centers. Experimental results demonstrate the advantages of this method over standard random selection and partial random selection, in which some initial cluster centers come from labeled data while the other come from unlabeled data by random selection.
引用
收藏
页码:178 / +
页数:2
相关论文
共 50 条
  • [41] A method for detecting high-frequency oscillations using semi-supervised k-means and mean shift clustering
    Du, Yuxiao
    Sun, Bo
    Lu, Renquan
    Zhang, Chunling
    Wu, Hao
    NEUROCOMPUTING, 2019, 350 : 102 - 107
  • [42] ANR: An algorithm to recommend initial cluster centers for k-means algorithm
    Delavar, Arash Ghorbannia
    Mohebpour, Gholam Hasan
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2014, 11 (04): : 277 - 290
  • [43] Semi-supervised Image Segmentation Based on K-means Algorithm and Random Walk
    Cai Xiumei
    Bian Jingwei
    Wang Yan
    Cui Qiaoqiao
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 2853 - 2856
  • [44] An Improved Three-Way K-Means Algorithm by Optimizing Cluster Centers
    Guo, Qihang
    Yin, Zhenyu
    Wang, Pingxin
    SYMMETRY-BASEL, 2022, 14 (09):
  • [45] RAPID CLUSTERING WITH SEMI-SUPERVISED ENSEMBLE DENSITY CENTERS
    Kadhim, Mustafa R.
    Tian, Wenhong
    Khan, Tahseen
    2019 16TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICWAMTIP), 2019, : 230 - 235
  • [46] An Improved Swarm Based Hybrid K-Means Clustering for Optimal Cluster Centers
    Nayak, Janmenjoy
    Naik, Bighnaraj
    Kanungo, D. P.
    Behera, H. S.
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 1, 2015, 339 : 545 - 553
  • [47] An enriched K-means clustering method for grouping fractures with meliorated initial centers
    Ma, G. W.
    Xu, Z. H.
    Zhang, W.
    Li, S. C.
    ARABIAN JOURNAL OF GEOSCIENCES, 2015, 8 (04) : 1881 - 1893
  • [48] An enriched K-means clustering method for grouping fractures with meliorated initial centers
    G. W. Ma
    Z. H. Xu
    W. Zhang
    S. C. Li
    Arabian Journal of Geosciences, 2015, 8 : 1881 - 1893
  • [49] Using Genetic Algorithm for Selection of Initial Cluster Centers for the K-Means Method
    Kwedlo, Wojciech
    Iwanowicz, Piotr
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, PT II, 2010, 6114 : 165 - 172
  • [50] On Semi-Supervised Fuzzy c-Means Clustering
    Yasunori, Endo
    Yukihiro, Hamasuna
    Makito, Yamashiro
    Sadaaki, Miyamoto
    2009 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, 2009, : 1119 - +