RETRACTED: Flavor-cyber-agriculture: Optimization of plant metabolites in an open-source control environment through surrogate modeling (Retracted article. See vol. 16, 2021)

被引:29
作者
Johnson, Arielle J. [1 ]
Meyerson, Elliot [2 ,3 ]
de la Parra, John [1 ,4 ]
Savas, Timothy L. [1 ]
Miikkulainen, Risto [2 ,3 ]
Harper, Caleb B. [1 ]
机构
[1] MIT, Media Lab, Cambridge, MA 02139 USA
[2] Univ Texas Austin, Dept Comp Sci, Austin, TX 78712 USA
[3] Cognizant Technol Solut, San Francisco, CA USA
[4] Harvard Univ, Harvard Univ Herbaria, Cambridge, MA 02138 USA
关键词
OCIMUM-BASILICUM L; ESSENTIAL OIL; UV-B; GROWTH; NUTRITION; CO2;
D O I
10.1371/journal.pone.0213918
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Food production in conventional agriculture faces numerous challenges such as reducing waste, meeting demand, maintaining flavor, and providing nutrition. Contained environments under artificial climate control, or cyber-agriculture, could in principle be used to meet many of these challenges. Through such environments, phenotypic expression of the plant-mass, edible yield, flavor, and nutrients-can be actuated through a "climate recipe," where light, water, nutrients, temperature, and other climate and ecological variables are optimized to achieve a desired result. This paper describes a method for doing this optimization for the desired result of flavor by combining cyber-agriculture, metabolomic phenotype (chemotype) measurements, and machine learning. In a pilot experiment, (1) environmental conditions, i.e. photoperiod and ultraviolet (UV) light (known to affect production of flavor-active molecules in edible plants) were applied under different regimes to basil plants (Ocimum basilicum) growing inside a hydroponic farm with an open-source design; (2) flavoractive volatile molecules were measured in each plant using gas chromatography-mass spectrometry (GC-MS); and (3) symbolic regression was used to construct a surrogate model of this chemistry from the input environmental variables, and this model was used to discover new combinations of photoperiod and UV light to increase this chemistry. These new combinations, or climate recipes, were then implemented in the hydroponic farm, and several of them resulted in a marked increase in volatiles over control. The process also led to two important insights: it demonstrated a "dilution effect", i.e. a negative correlation between weight and desirable chemical species, and it discovered the surprising effect that a 24-hour photoperiod of photosynthetic-active radiation, the equivalent of all-day light, induces the most flavor molecule production in basil. In this manner, surrogate optimization through machine learning can be used to discover effective recipes for cyber-agriculture that would be difficult and time-consuming to find using hand-designed experiments.
引用
收藏
页数:16
相关论文
共 54 条
[1]   Photoperiod and plant growth: a review [J].
Adams, SR ;
Langton, FA .
JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2005, 80 (01) :2-10
[2]  
[Anonymous], 2009, ARXIV09123995
[3]   Soil Bacteria Elevate Essential Oil Accumulation and Emissions in Sweet Basil [J].
Banchio, Erika ;
Xie, Xitao ;
Zhang, Huiming ;
Pare, Paul W. .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2009, 57 (02) :653-657
[4]  
Bergstra J, 2011, ADV NEURAL INFORM PR, P2546, DOI 10.5555/2986459.2986743
[5]   Solar irradiance level alters the growth of basil (Ocimum basilicum L.) and its content of volatile oils [J].
Chang, Xianmin ;
Alderson, Peter G. ;
Wright, Charles J. .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2008, 63 (1-3) :216-223
[6]   Effect of temperature integration on the growth and volatile. oil content of basil (Ocimum basilicum L.) [J].
Chang, XM ;
Alderson, PG ;
Wright, CJ .
JOURNAL OF HORTICULTURAL SCIENCE & BIOTECHNOLOGY, 2005, 80 (05) :593-598
[7]   SEQUENTIAL DESIGN OF EXPERIMENTS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1959, 30 (03) :755-770
[8]   Elevated CO2 reduces the nitrogen concentration of plant tissues [J].
Cotrufo, MF ;
Ineson, P ;
Scott, A .
GLOBAL CHANGE BIOLOGY, 1998, 4 (01) :43-54
[9]   Declining Fruit and Vegetable Nutrient Composition: What Is the Evidence? [J].
Davis, Donald R. .
HORTSCIENCE, 2009, 44 (01) :15-19
[10]   Changes in USDA food composition data for 43 garden crops, 1950 to 1999 [J].
Davis, DR ;
Epp, MD ;
Riordan, HD .
JOURNAL OF THE AMERICAN COLLEGE OF NUTRITION, 2004, 23 (06) :669-682