Oxygen vacancy diffusion across cathode/electrolyte interface in solid oxide fuel cells: An electrochemical phase-field model

被引:8
作者
Hong, Liang [1 ]
Hu, Jia-Mian [1 ]
Gerdes, Kirk [2 ]
Chen, Long-Qing [1 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Natl Energy Technol Lab, Morgantown, WV 26507 USA
关键词
Oxygen vacancy diffusion; Electrochemical model; Electrode/electrolyte interface; Phase-field model; YTTRIA-STABILIZED ZIRCONIA; IONIC-CONDUCTIVITY; CATHODE; SIMULATION; REDUCTION; TRANSPORT; PERFORMANCE; PATHWAYS; KINETICS; SYSTEM;
D O I
10.1016/j.jpowsour.2015.04.090
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An electrochemical phase-field model is developed to study electronic and ionic transport across the cathode/electrolyte interface in solid oxide fuel cells. The influences of local current density and interfacial electrochemical reactions on the transport behaviors are incorporated. This model reproduces two electrochemical features. Nernst equation is satisfied through the thermodynamic equilibriums of the electron and oxygen vacancy. The distributions of charged species around the interface induce charge double layer. Moreover, we verify the nonlinear current/overpotential relationship. This model facilitates the exploration of problems in solid oxide fuel cells, which are associated with transport of species and electrochemical reactions at high operating temperature. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:396 / 400
页数:5
相关论文
共 30 条
[1]  
Adamson A.W., 1997, Physical Chemistry of Surfaces
[2]   Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance [J].
Aguiar, P ;
Adjiman, CS ;
Brandon, NP .
JOURNAL OF POWER SOURCES, 2004, 138 (1-2) :120-136
[3]  
Bard AJ, 2001, ELECTROCHEMICAL METH
[4]   A new framework for physically based modeling of solid oxide fuel cells [J].
Bessler, Wolfgang G. ;
Gewies, Stefan ;
Vogler, Marcel .
ELECTROCHIMICA ACTA, 2007, 53 (04) :1782-1800
[5]   FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY [J].
CAHN, JW ;
HILLIARD, JE .
JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) :258-267
[6]   Diffuse-Interface Modeling and Multiscale-Relay Simulation of Metal Oxidation Kinetics-With Revisit on Wagner's Theory [J].
Cheng, Tian-Le ;
Wen, You-Hai ;
Hawk, Jeffrey A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (02) :1269-1284
[7]   Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations [J].
Chroneos, Alexander ;
Yildiz, Bilge ;
Tarancon, Albert ;
Parfitt, David ;
Kilner, John A. .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (08) :2774-2789
[8]   Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries [J].
De Souza, Roger A. ;
Pietrowski, Martha J. ;
Anselmi-Tamburini, Umberto ;
Kim, Sangtae ;
Munir, Zuhair A. ;
Martin, Manfred .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (15) :2067-2072
[9]   Phase Field Modeling of Solid Electrolyte Interface Formation in Lithium Ion Batteries [J].
Deng, Jie ;
Wagner, Gregory J. ;
Muller, Richard P. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (03) :A487-A496
[10]   Three-dimensional numerical simulation for various geometries of solid oxide fuel cells [J].
Ferguson, JR ;
Fiard, JM ;
Herbin, R .
JOURNAL OF POWER SOURCES, 1996, 58 (02) :109-122