Stationary Layered Solutions for a System of Allen-Cahn Type Equations

被引:15
作者
Alessio, Francesca [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, I-60131 Ancona, Italy
关键词
Elliptic systems; variational methods; Brake orbits; CONJECTURE; GIORGI; R-2; SYMMETRY; ORBITS;
D O I
10.1512/iumj.2013.62.5108
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of a semilinear elliptic system of the form (0.1) -Delta u(x, y) + del W(u(x, y)) = 0, (x, y) is an element of R-2 where W : R-2 -> R is a double well nonnegative symmetric potential. We show, via variational methods, that if the set of solutions to the one-dimensional system -q(x) + del W(q(x)) 0, x is an element of R, which connect the two minima of W as x -> +/-infinity, has a discrete structure, then (0.1) has infinitely many layered solutions.
引用
收藏
页码:1535 / 1564
页数:30
相关论文
共 32 条
[1]  
Alama S, 1997, CALC VAR PARTIAL DIF, V5, P359, DOI 10.1007/s005260050071
[2]   On a long-standing conjecture of E.!De Giorgi:: Symmetry in 3D for general nonlinearities and a local minimality property [J].
Alberti, G ;
Ambrosio, L ;
Cabré, X .
ACTA APPLICANDAE MATHEMATICAE, 2001, 65 (1-3) :9-33
[3]  
Alessio F, 2000, CALC VAR PARTIAL DIF, V11, P177, DOI 10.1007/s005260000036
[4]   Entire solutions in R2 for a class of Allen-Cahn equations [J].
Alessio, F ;
Montecchiari, P .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2005, 11 (04) :633-672
[5]  
Alessio F, 2005, ADV NONLINEAR STUD, V5, P515
[6]   Brake orbits type solutions to some class of semilinear elliptic equations [J].
Alessio, Francesca ;
Montecchiari, Piero .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (01) :51-83
[7]   On the connection problem for potentials with several global minima [J].
Alikakos, N. D. ;
Fusco, G. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (04) :1871-1906
[8]  
ALIKAKOS N. D., 2010, ELLIPTIC SYSTEM SYMM
[9]   Entire Solutions to Equivariant Elliptic Systems with Variational Structure [J].
Alikakos, Nicholas D. ;
Fusco, Giorgio .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 202 (02) :567-597
[10]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739