Optimal capital allocation based on the Tail Mean-Variance model

被引:23
作者
Xu, Maochao [1 ]
Mao, Tiantian [2 ]
机构
[1] Illinois State Univ, Dept Math, Normal, IL 61761 USA
[2] Univ Sci & Technol China, Sch Management, Dept Stat & Finance, Hefei 230026, Anhui, Peoples R China
基金
中国博士后科学基金;
关键词
Capital allocation; Elliptical distribution; Mean-Variance; Multivariate regular variation; Quadratic distance; HETEROGENEOUS PORTFOLIO; RISK; DISTRIBUTIONS;
D O I
10.1016/j.insmatheco.2013.08.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper studies capital allocation problems with the aggregate risk exceeding a certain threshold. We propose a novel capital allocation rule based on the Tail Mean-Variance principle. General formulas for the optimal capital allocations are proposed. Explicit formulas for optimal capital allocations are derived for multivariate elliptical distributions. Moreover, we give asymptotic allocation formulas for multivariate regular variation variables. Various numerical examples are given to illustrate the results, and real insurance data is discussed as well. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:533 / 543
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 1999, Athena scientific Belmont
[2]   Asymptotics for risk capital allocations based on Conditional Tail Expectation [J].
Asimit, Alexandru V. ;
Furman, Edward ;
Tang, Qihe ;
Vernic, Raluca .
INSURANCE MATHEMATICS & ECONOMICS, 2011, 49 (03) :310-324
[3]  
Bingham N.H., 1989, REGULAR VARIATION
[4]   Conditional tail expectations for multivariate phase-type distributions [J].
Cai, J ;
Li, HJ .
JOURNAL OF APPLIED PROBABILITY, 2005, 42 (03) :810-825
[5]  
Chiragiev A., 2007, Scandinavian Actuarial Journal, V4, P261
[6]   Optimal Capital Allocation Principles [J].
Dhaene, Jan ;
Tsanakas, Andreas ;
Valdez, Emiliano A. ;
Vanduffel, Steven .
JOURNAL OF RISK AND INSURANCE, 2012, 79 (01) :1-28
[7]  
Embrechts P., 2008, Modelling Extremal Events
[8]  
Fang K.-T., 1987, SYMMETRIC MULTIVARIA
[9]   Optimal pricing for a heterogeneous portfolio for a given risk factor and convex distance measure [J].
Frostig, Esther ;
Zaks, Yaniv ;
Levikson, Benny .
INSURANCE MATHEMATICS & ECONOMICS, 2007, 40 (03) :459-467
[10]   Risk capital decomposition for a multivariate dependent gamma portfolio [J].
Furman, E ;
Landsman, Z .
INSURANCE MATHEMATICS & ECONOMICS, 2005, 37 (03) :635-649