The range of operators on von Neumann algebras

被引:22
作者
Bermúdez, T [1 ]
Kalton, NJ
机构
[1] Univ La Laguna, Dept Anal Matemat, Tenerife 38271, Canary Isl, Spain
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
Grothendieck space; L-embedded space; von Neumann algebra; point spectrum; topologically transitive operator; hypercyclic operator;
D O I
10.1090/S0002-9939-01-06292-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for every bounded linear operator T : X-->X, where X is a non-reflexive quotient of a von Neumann algebra, the point spectrum of T* is non-empty (i.e., for some lambda is an element of C the operator lambdaI-T fails to have dense range). In particular, and as an application, we obtain that such a space cannot support a topologically transitive operator.
引用
收藏
页码:1447 / 1455
页数:9
相关论文
共 22 条
[1]  
[Anonymous], 1993, PITMAN MONOGRAPHS
[2]   Existence of hypercyclic operators on topological vector spaces [J].
Ansari, SI .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 148 (02) :384-390
[3]   On hypercyclic operators on Banach spaces [J].
Bernal-González, L .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :1003-1010
[4]   Hereditarily hypercyclic operators [J].
Bès, J ;
Peris, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (01) :94-112
[5]   Hypercyclic operators on non-normable Frechet spaces [J].
Bonet, J ;
Peris, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 159 (02) :587-595
[6]  
Chan KC, 1999, J OPERAT THEOR, V42, P231
[7]  
Diestel J., 1984, SEQUENCES SERIES BAN
[8]   OPERATORS WITH DENSE, INVARIANT, CYCLIC VECTOR MANIFOLDS [J].
GODEFROY, G ;
SHAPIRO, JH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 98 (02) :229-269
[9]   Universal families and hypercyclic operators [J].
Grosse-Erdmann, KG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 36 (03) :345-381
[10]   BANACH-SPACES WHOSE DUAL BALLS ARE NOT WEAK SEQUENTIALLY COMPACT [J].
HAGLER, J ;
JOHNSON, WB .
ISRAEL JOURNAL OF MATHEMATICS, 1977, 28 (04) :325-330