On the Smallest Robustly Control Invariant Sets in Finite Alphabet Logistics Networks

被引:0
|
作者
Tarraf, Danielle C. [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
来源
2012 6TH INTERNATIONAL CONFERENCE ON NETWORK GAMES, CONTROL AND OPTIMIZATION (NETGCOOP) | 2012年
关键词
SYSTEMS; REACHABILITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider logistics networks where the disturbances and control actions take discrete values, and we propose upper and lower bounds on the smallest robustly control invariant hyperbox sets.
引用
收藏
页码:112 / 115
页数:4
相关论文
共 50 条
  • [21] Optimal Control of Finite-valued Networks
    Cheng, Daizhan
    Zhao, Yin
    Liu, Jiang-Bo
    PROCEEDINGS OF THE 10TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2012), 2012, : 2274 - 2279
  • [22] Parameterized Robust Control Invariant Sets for Linear Systems: Theoretical Advances and Computational Remarks
    Rakovic, Sasa V.
    Baric, Miroslav
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2010, 55 (07) : 1599 - 1614
  • [23] A Nonlinear Model Predictive Control with Enlarged Region of Attraction via the Union of Invariant Sets
    Fitri, Ismi Rosyiana
    Kim, Jung-Su
    MATHEMATICS, 2020, 8 (11) : 1 - 15
  • [24] Convex-lifting-based robust control design using the tunable robust invariant sets
    Oravec, Juraj
    Holaza, Juraj
    Horvathova, Michaela
    Nguyen, Ngoc A.
    Kvasnica, Michal
    Bakosova, Monika
    EUROPEAN JOURNAL OF CONTROL, 2019, 49 : 44 - 52
  • [25] Robust Control Invariant Sets and Lyapunov-Based MPC for IPM Synchronous Motor Drives
    Preindl, Matthias
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2016, 63 (06) : 3925 - 3933
  • [26] Sum-of-Squares methods for controlled invariant sets with applications to model-predictive control
    Legat, Benoit
    Tabuada, Paulo
    Jungers, Raphael M.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2020, 36
  • [27] Controllability of time-variant Boolean control networks and its application to Boolean control networks with finite memories
    Zhang LiJun
    Zhang KuiZe
    SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (10) : 1 - 12
  • [28] Finite-Time Disturbance Decoupling of Boolean Control Networks
    Li, Yiliang
    Feng, Jun-e
    Meng, Min
    Zhu, Jiandong
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (05): : 3199 - 3207
  • [29] Finite-Time Synchronizing Control for Chaotic Neural Networks
    Zhang, Chao
    Guo, Qiang
    Wang, Jing
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [30] Finite automata approach to reconstructibility of switched Boolean control networks
    Gao, Zhe
    Wang, Biao
    Feng, Jun-e
    Li, Tiantian
    NEUROCOMPUTING, 2021, 454 : 34 - 44