Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device

被引:598
作者
Sobhani, Ali [1 ,2 ]
Knight, Mark W. [1 ,2 ]
Wang, Yumin [1 ,2 ]
Zheng, Bob [1 ,2 ]
King, Nicholas S. [1 ,2 ]
Brown, Lisa V. [2 ,3 ]
Fang, Zheyu [1 ,2 ,4 ,5 ]
Nordlander, Peter [1 ,2 ,4 ]
Halas, Naomi J. [1 ,2 ,4 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[2] Rice Univ, Lab Nanophoton, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem, Houston, TX 77005 USA
[4] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[5] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
关键词
EXTRAORDINARY OPTICAL-TRANSMISSION; SCHOTTKY DETECTOR; SOLAR-CELLS; METAMATERIALS; ARRAYS; LIGHT; SLITS; FILMS; NANOSTRUCTURE; SPECTROSCOPY;
D O I
10.1038/ncomms2642
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In gratings, incident light can couple strongly to plasmons propagating through periodically spaced slits in a metal film, resulting in a strong, resonant absorption whose frequency is determined by the nanostructure periodicity. When a grating is patterned on a silicon substrate, the absorption response can be combined with plasmon-induced hot electron photocurrent generation. This yields a photodetector with a strongly resonant, narrowband photocurrent response in the infrared, limited at low frequencies by the Schottky barrier, not the bandgap of silicon. Here we report a grating-based hot electron device with significantly larger photocurrent responsivity than previously reported antenna-based geometries. The grating geometry also enables more than three times narrower spectral response than observed for nanoantenna-based devices. This approach opens up the possibility of plasmonic sensors with direct electrical readout, such as an on-chip surface plasmon resonance detector driven at a single wavelength.
引用
收藏
页数:6
相关论文
共 38 条
  • [1] Surface plasmon waveguide Schottky detector
    Akbari, Ali
    Tait, R. Niall
    Berini, Pierre
    [J]. OPTICS EXPRESS, 2010, 18 (08): : 8505 - 8514
  • [2] Theory of diffraction by small holes
    Bethe, HA
    [J]. PHYSICAL REVIEW, 1944, 66 (7/8): : 163 - 182
  • [3] Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing
    Camden, Jon P.
    Dieringer, Jon A.
    Zhao, Jing
    Van Duyne, Richard P.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) : 1653 - 1661
  • [4] TITANIUM-SILICON SCHOTTKY BARRIER DIODES
    COWLEY, AM
    [J]. SOLID-STATE ELECTRONICS, 1970, 13 (04) : 403 - +
  • [5] BALLISTIC MEAN FREE PATH MEASUREMENTS OF HOT ELECTRONS IN AU FILMS
    CROWELL, CR
    SZE, SM
    [J]. PHYSICAL REVIEW LETTERS, 1965, 15 (16) : 659 - &
  • [6] Extraordinary optical transmission through sub-wavelength hole arrays
    Ebbesen, TW
    Lezec, HJ
    Ghaemi, HF
    Thio, T
    Wolff, PA
    [J]. NATURE, 1998, 391 (6668) : 667 - 669
  • [7] Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells
    Ferry, Vivian E.
    Sweatlock, Luke A.
    Pacifici, Domenico
    Atwater, Harry A.
    [J]. NANO LETTERS, 2008, 8 (12) : 4391 - 4397
  • [8] Light in tiny holes
    Genet, C.
    Ebbesen, T. W.
    [J]. NATURE, 2007, 445 (7123) : 39 - 46
  • [9] Strong polarization in the optical transmission through elliptical nanohole arrays
    Gordon, R
    Brolo, AG
    McKinnon, A
    Rajora, A
    Leathem, B
    Kavanagh, KL
    [J]. PHYSICAL REVIEW LETTERS, 2004, 92 (03) : 4
  • [10] Locally Oxidized Silicon Surface-Plasmon Schottky Detector for Telecom Regime
    Goykhman, Ilya
    Desiatov, Boris
    Khurgin, Jacob
    Shappir, Joseph
    Levy, Uriel
    [J]. NANO LETTERS, 2011, 11 (06) : 2219 - 2224