Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system

被引:96
作者
Hosseinzadeh, Elham [1 ]
Rokni, Masoud [1 ]
Rabbani, Abid [1 ]
Mortensen, Henrik Hilleke [2 ]
机构
[1] Tech Univ Denmark, Dept Mech Engn, Thermal Energy Sect, DK-2800 Lyngby, Denmark
[2] H2Log AS, DK-7400 Herning, Denmark
关键词
PEM; Fuel cell; Thermal management; Water management; Forklift; Power system; PARAMETERS ESTIMATION; MODEL; PEMFC; PERFORMANCE; OPTIMIZATION; HUMIDIFICATION; SIMULATION; ISSUES;
D O I
10.1016/j.apenergy.2012.11.048
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
A general zero-dimensional Proton Exchange Membrane Fuel Cell (PEMFC) model has been developed for forklift truck application. The balance of plant (BOP) comprises of a compressor, an air humidifier, a set of heat exchangers and a recirculation pump. Water and thermal management of the fuel cell stack and BOP has been investigated in this study. The results show that humidification of the inlet air is of great importance. By decreasing the relative humidity of inlet air from 95% to 25%, the voltage can drop by 29%. In addition, elevated stack temperature can lead to a higher average cell voltage when membrane is fully hydrated otherwise it causes a drastic voltage drop in the stack. Furthermore, by substituting liquid water with water-ethylene glycol mixture of 50%, the mass flow of coolant increases by about 32-33% in the inner loop and 60-65% in the outer loop for all ranges of current. The system can then be started up at about -25 degrees C with negligible change in the efficiency. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:434 / 444
页数:11
相关论文
共 53 条
[1]   Coolant controls of a PEM fuel cell system [J].
Ahn, Jong-Woo ;
Choe, Song-Yul .
JOURNAL OF POWER SOURCES, 2008, 179 (01) :252-264
[2]   Modelling, simulation and control of a proton exchange membrane fuel cell (PEMFC) power system [J].
Al-Dabbagh, Ahmad W. ;
Lu, Lixuan ;
Mazza, Antonio .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (10) :5061-5069
[3]   Measurement of current distribution in a proton exchange membrane fuel cell with various flow arrangements - A parametric study [J].
Alaefour, Ibrahim ;
Karimi, G. ;
Jiao, Kui ;
Li, X. .
APPLIED ENERGY, 2012, 93 :80-89
[4]   PERFORMANCE MODELING OF THE BALLARD-MARK-IV SOLD POLYMER ELECTROLYTE FUEL-CELL .2. EMPIRICAL-MODEL DEVELOPMENT [J].
AMPHLETT, JC ;
BAUMERT, RM ;
MANN, RF ;
PEPPLEY, BA ;
ROBERGE, PR ;
HARRIS, TJ .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (01) :9-15
[5]   Anode water removal and cathode gas diffusion layer flooding in a proton exchange membrane fuel cell [J].
Anderson, Ryan ;
Blanco, Mauricio ;
Bi, Xiaotao ;
Wilkinson, David P. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (21) :16093-16103
[6]   High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy [J].
Andreasen, Soren Juhl ;
Vang, Jakob Rabjerg ;
Kaer, Soren Knudsen .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (16) :9815-9830
[7]   A multi-objective optimisation model for a general polymer electrolyte membrane fuel cell system [J].
Ang, Sheila Mae C. ;
Brett, Daniel J. L. ;
Fraga, Eric S. .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2754-2763
[8]   Operating proton exchange membrane fuel cells without external humidification of the reactant gases - Fundamental aspects [J].
Buchi, FN ;
Srinivasan, S .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (08) :2767-2772
[9]   Characterisation and modelling of a 5 kW PEMFC for transportation applications [J].
Candusso, D ;
Harel, F ;
De Bernardinis, A ;
François, X ;
Péra, MC ;
Hissel, D ;
Schott, P ;
Coquery, G ;
Kauffmann, JM .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2006, 31 (08) :1019-1030
[10]   Modelling and simulation of the utilization of a PEM fuel cell in the rural sector of Venezuela [J].
Contreras, Alfonso ;
Posso, Fausto ;
Guervos, Esther .
APPLIED ENERGY, 2010, 87 (04) :1376-1385