Algebraic Chern-Simons theory

被引:14
作者
Bloch, S [1 ]
Esnault, H [1 ]
机构
[1] UNIV ESSEN GESAMTHSCH,FB 6,D-45117 ESSEN,GERMANY
关键词
D O I
10.1353/ajm.1997.0021
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A theory of secondary characteristic classes analogous to the classical Chern-Simons theory is developed for algebraic vector bundles. Applications are made to questions involving finer charcterisitic classes for bundles with connection and to the Griffiths group of algebraic cycles.
引用
收藏
页码:903 / 952
页数:50
相关论文
共 50 条
[31]   A Chern-Simons theory for dipole symmetry [J].
Huang, Xiaoyang .
SCIPOST PHYSICS, 2023, 15 (04)
[32]   PARITY ANOMALY IN CHERN-SIMONS THEORY [J].
KORCHEMSKY, GP .
MODERN PHYSICS LETTERS A, 1991, 6 (08) :727-738
[33]   Nonperturbative universal Chern-Simons theory [J].
Mkrtchyan, R. L. .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (09)
[34]   Chern-Simons theory and topological strings [J].
Mariño, M .
REVIEWS OF MODERN PHYSICS, 2005, 77 (02) :675-720
[35]   OPERATOR REGULARIZATION IN CHERN-SIMONS THEORY [J].
MCKEON, DGC .
CANADIAN JOURNAL OF PHYSICS, 1990, 68 (11) :1291-1295
[36]   CHERN-SIMONS THEORY AND FUSION ALGEBRAS [J].
GUADAGNINI, E .
PHYSICS LETTERS B, 1991, 260 (3-4) :353-358
[37]   THE LINK POLYNOMIALS OF THE CHERN-SIMONS THEORY [J].
GUADAGNINI, E .
PHYSICS LETTERS B, 1990, 251 (01) :115-120
[38]   ON THE STOCHASTIC QUANTIZATION OF THE CHERN-SIMONS THEORY [J].
FERRARI, F ;
HUFFEL, H .
PHYSICS LETTERS B, 1991, 261 (1-2) :47-50
[39]   Representation theory of Chern-Simons observables [J].
Alekseev, AY ;
Schomerus, V .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (02) :447-510
[40]   Hopf instantons in Chern-Simons theory [J].
Adam, C ;
Muratori, B ;
Nash, C .
PHYSICAL REVIEW D, 2000, 61 (10)