A novel machine learning approach to analyzing geospatial vessel patterns using AIS data

被引:14
作者
Ferreira, Martha Dais [1 ]
Campbell, Jessica N. A. [2 ]
Matwin, Stan [1 ]
机构
[1] Dalhousie Univ, Fac Comp Sci, Halifax, NS, Canada
[2] Def Res & Dev Canada, Maritime Syst Expt & Analyt, Dartmouth, NS, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Ais; clustering; anomaly detection; pattern detection; time-series; ANOMALY DETECTION;
D O I
10.1080/15481603.2022.2118437
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In the maritime environment, the Automatic Identification System (AIS) contains information related to vessel trajectories that can be used to detect unusual maritime occurrences and maritime traffic patterns. To detect such occurrences with supervised learning methods the AIS messages must be manually annotated, which can be a demanding process. Therefore, unsupervised methods are used to identify anomalous traffic patterns based on vessel trajectories. Typically, dense regions of maritime activity are studied to capture common traffic patterns which help identify trajectories that do not follow the norm. However, these approaches cannot detect anomalous behaviors along common pathways or incorporate time-related events into the analysis. Such challenges motivate the approach taken in this work by using auto-regressive techniques to model vessel trajectories and clustering analyses to explore behavior patterns of vessels. Results confirm that the Auto-regressive Integrated Moving Average (ARIMA) and Ornstein-Uhlenbeck (OU) processes are able to model the trajectories and can be used with density-based spatial clustering of applications with noise (DBSCAN), hierarchical clustering (HC), and spectral clustering (SC) to identify different behavioral patterns.
引用
收藏
页码:1473 / 1490
页数:18
相关论文
共 52 条
[1]  
[Anonymous], 2018, FORECASTING PRINCIPL
[2]  
[Anonymous], 2014, Introduction to Probability Models, DOI DOI 10.1016/C2012-0-03564-8
[3]  
Bagnall AnthonyJ., 2004, KDD, P49, DOI DOI 10.1145/1014052.1014061
[4]   Multiple Ornstein-Uhlenbeck Processes for Maritime Traffic Graph Representation [J].
Coscia, Pasquale ;
Braca, Paolo ;
Millefiori, Leonardo M. ;
Palmieri, Francesco A. N. ;
Willett, Peter .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (05) :2158-2170
[5]   Detecting Anomalous Deviations From Standard Maritime Routes Using the Ornstein-Uhlenbeck Process [J].
d'Afflisio, Enrica ;
Braca, Paolo ;
Millefiori, Leonardo M. ;
Willett, Peter .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (24) :6474-6487
[6]  
d'Afflisio E, 2018, 2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), P1171, DOI 10.23919/ICIF.2018.8455854
[7]   Bayesian Filtering for Dynamic Anomaly Detection and Tracking [J].
Forti, Nicola ;
Millefiori, Leonardo M. ;
Braca, Paolo ;
Willett, Peter .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (03) :1528-1544
[8]   Unsupervised extraction of maritime patterns of life from Automatic Identification System data [J].
Forti, Nicola ;
Millefiori, Leonardo M. ;
Braca, Paolo .
OCEANS 2019 - MARSEILLE, 2019,
[9]  
Forti N, 2019, INT CONF ACOUST SPEE, P8449, DOI 10.1109/ICASSP.2019.8683428
[10]   Finding Abnormal Vessel Trajectories Using Feature Learning [J].
Fu, Peiguo ;
Wang, Haozhou ;
Liu, Kuien ;
Hu, Xiaohui ;
Zhang, Hui .
IEEE ACCESS, 2017, 5 :7898-7909