Subspace theorem for moving hypersurfaces and semi-decomposable form inequalities

被引:1
作者
Ji, Qingchun [1 ]
Yan, Qiming [2 ]
Yu, Guangsheng [3 ]
机构
[1] Fudan Univ, Shanghai Ctr Math Sci, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
[3] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
关键词
Schmidt's subspace theorem; Moving targets; Semi-decomposable form; 2ND MAIN THEOREM;
D O I
10.1016/j.jnt.2020.01.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a Schmidt's subspace type theorem is given for moving hypersurfaces. As the applications, we give some finiteness criteria for the solutions of the sequence of semi-decomposable form equations and inequalities. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:28 / 51
页数:24
相关论文
共 26 条
[1]   Schmidt's Subspace Theorem with Moving Hypersurfaces [J].
Chen, Zhihua ;
Ru, Min ;
Yan, Qiming .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (15) :6305-6329
[2]   The degenerated second main theorem and Schmidt's subspace theorem [J].
Chen ZhiHua ;
Ru Min ;
Yan QiMing .
SCIENCE CHINA-MATHEMATICS, 2012, 55 (07) :1367-1380
[3]   On a general Thue's equation [J].
Corvaja, P ;
Zannier, U .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (05) :1033-1055
[4]   On a general Thue's equation (vol 128, pg 1057, 2006) [J].
Corvaja, Pietro ;
Zannier, Umberto .
AMERICAN JOURNAL OF MATHEMATICS, 2006, 128 (04) :1057-1066
[5]  
Dethloff G., ARXIV150308801
[6]  
Dethloff G, 2011, HOUSTON J MATH, V37, P79
[7]  
Evertse J.H., 2008, DIOPHANTINE APPROXIM, P175
[8]  
EVERTSE JH, 1991, COMPOS MATH, V79, P169
[9]   HYPERBOLIC AND DIOPHANTINE ANALYSIS [J].
LANG, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 14 (02) :159-205
[10]   Schmidt's subspace theorem for moving hypersurface targets [J].
Le, Giang .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2015, 11 (01) :139-158