Stable Blowup Dynamics for the 1-Corotational Energy Critical Harmonic Heat Flow

被引:71
作者
Raphael, Pierre [1 ]
Schweyer, Remi [2 ]
机构
[1] Inst Univ France, Inst Math Toulouse, Toulouse, France
[2] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 9, France
关键词
UP RATE; SINGULARITIES; EXISTENCE; MAPS; MASS;
D O I
10.1002/cpa.21435
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We exhibit a stable finite time blowup regime for the 1-corotational energy critical harmonic heat flow from R-2 into a smooth compact revolution surface of R-3 that reduces to the semilinear parabolic problem partial derivative(t)u - partial derivative(2)(r)u - partial derivative(r)u/r + f(u)/r(2) = 0 for a suitable class of functions f. The corresponding initial data can be chosen smooth, well localized, and arbitrarily close to the ground state harmonic map in the energy-critical topology. We give sharp asymptotics on the corresponding singularity formation that occurs through the concentration of a universal bubble of energy at the speed predicted by van den Berg, Hulshof, and King. Our approach lies in the continuation of the study of the 1-equivariant energy critical wave map and Schrodinger map with S-2 target by Merle, Raphael, and Rodnianski. (C) 2012 Wiley Periodicals, Inc.
引用
收藏
页码:414 / 480
页数:67
相关论文
共 28 条
[1]   THE RADIUS OF VANISHING BUBBLES IN EQUIVARIANT HARMONIC MAP FLOW FROM D2 TO S2 [J].
Angenent, S. B. ;
Hulshof, J. ;
Matano, H. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) :1121-1137
[2]  
[Anonymous], 1995, Comm. Anal. Geom., DOI DOI 10.4310/CAG.1995.V3.N4.A1
[3]  
CHANG KC, 1992, J DIFFER GEOM, V36, P507
[4]  
CORON JM, 1989, CR ACAD SCI I-MATH, V308, P339
[5]  
Côte R, 2005, INT MATH RES NOTICES, V2005, P3525
[6]  
GALLOT S., 2004, Riemannian Geometry., V3rd
[7]   Global existence and blow-up for harmonic map heat flow [J].
Guan, Meijiao ;
Gustafson, Stephen ;
Tsai, Tai-Peng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (01) :1-20
[8]  
Gustafson S, 2010, COMMUN MATH PHYS, V300, P205, DOI 10.1007/s00220-010-1116-6
[9]   Renormalization and blow up for charge one equivariant critical wave maps [J].
Krieger, J. ;
Schlag, W. ;
Tataru, D. .
INVENTIONES MATHEMATICAE, 2008, 171 (03) :543-615
[10]   Two-Soliton Solutions to the Three-Dimensional Gravitational Hartree Equation [J].
Krieger, Joachim ;
Martel, Yvan ;
Raphael, Pierre .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (11) :1501-1550