Dynamics of antiferromagnetic skyrmion driven by the spin Hall effect

被引:129
作者
Jin, Chendong [1 ]
Song, Chengkun [1 ]
Wang, Jianbo [1 ,2 ]
Liu, Qingfang [1 ]
机构
[1] Lanzhou Univ, Minist Educ, Key Lab Magnetism & Magnet Mat, Lanzhou 730000, Peoples R China
[2] Lanzhou Univ, Minist Educ, Key Lab Special Funct Mat & Struct Design, Lanzhou 730000, Peoples R China
关键词
WEAK FERROMAGNETISM; MAGNETIC SKYRMIONS; DOMAIN-WALLS; MOTION; STABILITY;
D O I
10.1063/1.4967006
中图分类号
O59 [应用物理学];
学科分类号
摘要
Magnetic skyrmion moved by the spin-Hall effect is promising for the application of the generation racetrack memories. However, the Magnus force causes a deflected motion of skyrmion, which limits its application. Here, we create an antiferromagnetic skyrmion by injecting a spin-polarized pulse in the nanostripe and investigate the spin Hall effect-induced motion of antiferromagnetic skyrmion by micromagnetic simulations. In contrast to ferromagnetic skyrmion, we find that the antiferromagnetic skyrmion has three evident advantages: (i) the minimum driving current density of antiferromagnetic skyrmion is about two orders smaller than the ferromagnetic skyrmion; (ii) the velocity of the antiferromagnetic skyrmion is about 57 times larger than the ferromagnetic skyrmion driven by the same value of current density; (iii) antiferromagnetic skyrmion can be driven by the spin Hall effect without the influence of Magnus force. In addition, antiferromagnetic skyrmion can move around the pinning sites due to its property of topological protection. Our results present the understanding of antiferromagnetic skyrmion motion driven by the spin Hall effect and may also contribute to the development of antiferromagnetic skyrmion-based racetrack memories. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 25 条
[11]   Current-driven dynamics of Dzyaloshinskii domain walls in the presence of in-plane fields: Full micromagnetic and one-dimensional analysis [J].
Martinez, Eduardo ;
Emori, Satoru ;
Perez, Noel ;
Torres, Luis ;
Beach, Geoffrey S. D. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (21)
[12]   ANISOTROPIC SUPEREXCHANGE INTERACTION AND WEAK FERROMAGNETISM [J].
MORIYA, T .
PHYSICAL REVIEW, 1960, 120 (01) :91-98
[13]  
Nagaosa N, 2013, NAT NANOTECHNOL, V8, P899, DOI [10.1038/NNANO.2013.243, 10.1038/nnano.2013.243]
[14]   Micromagnetic Modeling of Dzyaloshinskii-Moriya Interaction in Spin Hall Effect Switching [J].
Perez, Noel ;
Torres, Luis ;
Martinez-Vecino, Eduardo .
IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (11)
[15]   Guided current-induced skyrmion motion in 1D potential well [J].
Purnama, I. ;
Gan, W. L. ;
Wong, D. W. ;
Lew, W. S. .
SCIENTIFIC REPORTS, 2015, 5
[16]  
Sampaio J, 2013, NAT NANOTECHNOL, V8, P839, DOI [10.1038/nnano.2013.210, 10.1038/nnano.2013.233, 10.1038/NNANO.2013.210]
[17]   Antiferromagnetic Domain Wall Motion Driven by Spin-Orbit Torques [J].
Shiino, Takayuki ;
Oh, Se-Hyeok ;
Haney, Paul M. ;
Lee, Seo-Won ;
Go, Gyungchoon ;
Park, Byong-Guk ;
Lee, Kyung-Jin .
PHYSICAL REVIEW LETTERS, 2016, 117 (08)
[18]   Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films [J].
Thiaville, Andre ;
Rohart, Stanislas ;
Jue, Emilie ;
Cros, Vincent ;
Fert, Albert .
EPL, 2012, 100 (05)
[19]   STEADY-STATE MOTION OF MAGNETIC DOMAINS [J].
THIELE, AA .
PHYSICAL REVIEW LETTERS, 1973, 30 (06) :230-233
[20]   A strategy for the design of skyrmion racetrack memories [J].
Tomasello, R. ;
Martinez, E. ;
Zivieri, R. ;
Torres, L. ;
Carpentieri, M. ;
Finocchio, G. .
SCIENTIFIC REPORTS, 2014, 4