Triangular Poisson structures on Lie groups and symplectic reduction

被引:0
作者
Hodges, TJ [1 ]
Yakimov, M
机构
[1] Univ Cincinnati, Dept Math, Cincinnati, OH 45221 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
来源
Noncommutative Geometry and Representation Theory in Mathematical Physics | 2005年 / 391卷
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that each triangular Poisson Lie group can be decomposed into Poisson submanifolds each of which is a quotient of a symplectic manifold. The Marsden-Weinstein-Meyer symplectic reduction technique is then used to give a complete description of the symplectic foliation of all triangular Poisson structures on Lie groups. The results are illustrated in detail for the generalized Jordanian Poisson structures on SL(n).
引用
收藏
页码:123 / 134
页数:12
相关论文
共 24 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]  
[Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
[3]  
Cannas da Silva A, 1999, BERKELEY MATH LECT N, V10
[4]  
Carter R. W., 1993, FINITE GROUPS LIE TY
[5]  
Chari V., 1995, A Guide to Quantum Groups
[6]  
DIATTA A, MATHDG0203198
[7]  
Dixmier J., 1977, -algebras
[8]  
Etingof P., 2002, LECT QUANTUM GROUPS, V2nd
[9]   Boundary solutions of the classical Yang-Baxter equation [J].
Gerstenhaber, M ;
Giaquinto, A .
LETTERS IN MATHEMATICAL PHYSICS, 1997, 40 (04) :337-353
[10]   PRIMITIVE-IDEALS OF C(Q)[SL(3)] [J].
HODGES, TJ ;
LEVASSEUR, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 156 (03) :581-605