Rearrangement of DNA fragments: a branch-and-cut algorithms

被引:5
作者
Ferreira, CE
de Souza, CC
Wakabayashi, Y
机构
[1] Univ Estadual Campinas, Inst Comp, BR-13083970 Campinas, SP, Brazil
[2] Univ Sao Paulo, Inst Matemat & Estat, BR-05508900 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
integer programming; computational biology; branch-and-cut; polyhedral combinatorics;
D O I
10.1016/S0166-218X(00)00324-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a problem called minimum k-contig problem (MkCP), whose specialization to an alphabet with four symbols can be seen as a problem that arises in the process of arranging DNA fragments to reconstruct a molecule. We present a graph theoretical formulation of MkCP and mention some extensions. We show this problem to be NP-hard for every k greater than or equal to 1 (for an alphabet that is not of fixed cardinality). A 0/1 integer linear programming formulation of the problem is given and some results of a branch-and-cut algorithm based on this formulation are discussed. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:161 / 177
页数:17
相关论文
共 9 条
[1]  
Carey M., 1979, COMPUTER INTRACTABIL
[2]   SOLVING LARGE-SCALE SYMMETRIC TRAVELING SALESMAN PROBLEMS TO OPTIMALITY [J].
CROWDER, H ;
PADBERG, MW .
MANAGEMENT SCIENCE, 1980, 26 (05) :495-509
[3]  
Grotschel M, 2012, Geometric algorithms and combinatorial optimization, V2
[4]  
KECECIOGLU J, 1991, THESIS U ARIZONA TUC
[5]   COMBINATORIAL ALGORITHMS FOR DNA-SEQUENCE ASSEMBLY [J].
KECECIOGLU, JD ;
MYERS, EW .
ALGORITHMICA, 1995, 13 (1-2) :7-51
[6]  
MEIDANIS J, 1997, COMPUTATIONAL MOL BI
[7]  
MEIDANIS J, 1992, THESIS U WISCONSIN M
[8]  
PADBERG MW, 1985, TRAVELLING SALESMAN
[9]   Optimization of restriction fragment DNA mapping [J].
Siegel, AF ;
Roach, JC ;
Magness, C ;
Thayer, E ;
van den Engh, G .
JOURNAL OF COMPUTATIONAL BIOLOGY, 1998, 5 (01) :113-126