Large eddy simulation of a confined jet diffusion flame using a finite difference method

被引:0
|
作者
De Bortoli, A. L. [1 ]
机构
[1] UFRGS IM DMPA Dept Pure & Appl Math, Porto Alegre, RS, Brazil
来源
PROGRESS IN COMPUTATIONAL FLUID DYNAMICS | 2008年 / 8卷 / 06期
关键词
jet diffusion flame; flame D; numerical simulation; low Mach number; finite difference;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
The aim of this work is the development of a low cost numerical technique for confined jet diffusion flames. A convenient formulation based on the mixture fraction for fluid flow and on flamelet models combined with the presumed probability density function for the chemistry is chosen. Numerical tests, for the governing equations discretised by the finite difference explicit Runge-Kutta multistage scheme, were carried out for turbulent, nonpremixed, nonreacting propane-jet flow and for Sandia D flame for reasonable values of gaseous hydrocarbon chemistry. The developed methodology, based on the low Mach number formulation, allows to decrease considerably the time needed to obtain reasonable results for a confined jet diffusion flame.
引用
收藏
页码:379 / 383
页数:5
相关论文
共 50 条
  • [31] Large eddy simulation of turbulent diffusion flame combustion using a conserved scalar methodology
    K. Wang
    Z. Yang
    J.J. McGuirk
    航空动力学报, 2007, (07) : 1106 - 1117
  • [32] Large Eddy Simulation of Autoignition in a Turbulent Hydrogen Jet Flame Using a Progress Variable Approach
    Kulkarni, Rohit
    Polifke, Wolfgang
    JOURNAL OF COMBUSTION, 2012, 2012
  • [33] Large-eddy simulation of a jet flame using a SOM-SGS combustion model
    Wang, Fang
    Zhou, Li-Xing
    Xu, Chun-Xiao
    Ranshao Kexue Yu Jishu/Journal of Combustion Science and Technology, 2006, 12 (03): : 221 - 225
  • [34] LARGE EDDY SIMULATION OF HYDROELASTIC VIBRATION USING THE FINITE ELEMENT METHOD
    Wang, W. Q.
    Zhang, L. X.
    He, X. Q.
    Guo, Y.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (24): : 4683 - 4706
  • [35] Large eddy simulation of a thermal impinging jet using the lattice Boltzmann method
    Nguyen, M.
    Boussuge, J. F.
    Sagaut, P.
    Larroya-Huguet, J. C.
    PHYSICS OF FLUIDS, 2022, 34 (05)
  • [36] Large Eddy Simulations of a piloted lean premix jet flame using finite-rate chemistry
    Duwig, Christophe
    Nogenmyr, Karl-Johan
    Chan, Cheong-ki
    Dunn, Matthew J.
    COMBUSTION THEORY AND MODELLING, 2011, 15 (04) : 537 - 568
  • [37] Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D)
    Sheikhi, MRH
    Drozda, TG
    Givi, P
    Jaberi, FA
    Pope, SB
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 : 549 - 556
  • [38] Large-eddy simulation of a supersonic lifted jet flame: Analysis of the turbulent flame base
    Bouheraoua, Lisa
    Domingo, Pascale
    Ribert, Guillaume
    COMBUSTION AND FLAME, 2017, 179 : 199 - 218
  • [39] Modeling of a Turbulent Diffusion Flame of Propane by Means of Large Eddy Simulation
    N. I. Gurakov
    A. D. Popov
    A. S. Semenikhin
    I. V. Chechet
    M. Yu. Anisimov
    S. G. Matveev
    Combustion, Explosion, and Shock Waves, 2024, 60 (4) : 471 - 477
  • [40] Large-Eddy Simulation and analysis of a sooting lifted turbulent jet flame
    Grader, Martin
    Eberle, Christian
    Gerlinger, Peter
    COMBUSTION AND FLAME, 2020, 215 : 458 - 470