Well-posedness results for the short pulse equation

被引:35
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [1 ]
机构
[1] Univ Bari, Dept Math, I-70125 Bari, Italy
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2015年 / 66卷 / 04期
关键词
Existence; Uniqueness; Stability; Entropy solutions; Conservation laws; Short pulse equation; Cauchy problem; Boundary value problems;
D O I
10.1007/s00033-014-0478-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The short pulse equation provides a model for the propagation of ultra-short light pulses in silica optical fibers. It is a nonlinear evolution equation. In this paper, the well-posedness of bounded solutions for the homogeneous initial boundary value problem and the Cauchy problem associated with this equation are studied.
引用
收藏
页码:1529 / 1557
页数:29
相关论文
共 16 条
[1]  
[Anonymous], 1979, Res. Notes in Math.
[2]  
Bardos C., 1979, Commun. Partial Differ. Equations, V4, P1017, DOI DOI 10.1080/03605307908820117
[3]   The short pulse hierarchy [J].
Brunelli, JC .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (12)
[4]   Ultra-short pulses in linear and nonlinear media [J].
Chung, Y ;
Jones, CKRT ;
Schäfer, T ;
Wayne, CE .
NONLINEARITY, 2005, 18 (03) :1351-1374
[5]   Initial-boundary value problems for conservation laws with source terms and the Degasperis-Procesi equation [J].
Coclite, G. M. ;
Karlsen, K. H. ;
Kwon, Y. -S. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 257 (12) :3823-3857
[6]  
Coclite G. M., J HYPERBOLI IN PRESS
[7]  
Coclite GM, 2005, DISCRETE CONT DYN-A, V13, P659
[8]  
Coclite GM., 2014, HYPERBOLIC CONSERVAT, P143
[9]  
di Ruvo L., 2013, Discontinuous solutions for the Ostrovsky-Hunter equation and two phase flows
[10]  
Kruzhkov S.N., 1970, Mat. Sb. (N.S.), V81, P228