Photonic band-gap waveguide microcavities: Monorails and air bridges

被引:22
作者
Lim, KY [1 ]
Ripin, DJ
Petrich, GS
Kolodziejski, LA
Ippen, EP
Mondol, M
Smith, HI
Villeneuve, PR
Fan, S
Joannopoulos, JD
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 1999年 / 17卷 / 03期
关键词
D O I
10.1116/1.590717
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Photonic band-gap monorail and air-bridge waveguide microcavities, operating at the wavelength regime of 1550 nm, are fabricated using GaAs-based compound semiconductors. The fabrication process involves gas-source molecular beam epitaxy, electron-beam lithography, reactive ion etching, and thermal wet oxidation of Al0.93Ga0.07As. The fabrication of the air-bridge microcavity, in particular, also entails the sacrificial wet etch of AlxOy to suspend the micromechanical structure. The monorail and air-bridge microcavities have been optically characterized and the transmission spectra exhibit resonances in the 1550 nm wavelength regime. Tunability of the resonant wavelength is demonstrated through changing the defect size in the one-dimensional photonic crystal. The quality factors (Q) of the microcavities are about 140 for the monorail and 230 for the air bridge, respectively. (C) 1999 American Vacuum Society. [S0734-211X(99)03303-X].
引用
收藏
页码:1171 / 1174
页数:4
相关论文
共 50 条
[41]   Plasmonic band-gap filter by using tapered waveguide [J].
Abbasi, Sajad ;
Emami, Farzin .
PRAMANA-JOURNAL OF PHYSICS, 2023, 97 (04)
[42]   Plasmonic band-gap filter by using tapered waveguide [J].
Sajad Abbasi ;
Farzin Emami .
Pramana, 97
[43]   Photonic Band-gap Evolution from Polycrystalline to Amorphous Photonic Structures [J].
Yang, Jin-Kyu ;
Noh, Heeso ;
Liew, Seng Fatt ;
Schreck, Carl ;
O'Hern, Corey S. ;
Cao, Hui .
2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
[44]   Dipole relaxation in dispersive photonic band-gap structures [J].
Kamli, A ;
Babiker, M ;
AlHajry, A ;
Enfati, N .
PHYSICAL REVIEW A, 1997, 55 (02) :1454-1461
[45]   QUANTUM OPTICS OF LOCALIZED LIGHT IN A PHOTONIC BAND-GAP [J].
JOHN, S ;
WANG, J .
PHYSICAL REVIEW B, 1991, 43 (16) :12772-12789
[46]   Dual Tuning of the Photonic Band-Gap Structure in Soft Photonic Crystals [J].
Honda, Masaki ;
Seki, Takahiro ;
Takeoka, Yukikazu .
ADVANCED MATERIALS, 2009, 21 (18) :1801-+
[47]   2-DIMENSIONAL PHOTONIC BAND-GAP MATERIALS [J].
WINN, JN ;
MEADE, RD ;
JOANNOPOULOS, JD .
JOURNAL OF MODERN OPTICS, 1994, 41 (02) :257-273
[48]   Resonance Raman scattering in photonic band-gap materials [J].
Woldeyohannes, Mesfin ;
John, Sajeev ;
Rupasov, Valery I. .
Physical Review A - Atomic, Molecular, and Optical Physics, 2001, 63 (01) :013814-013811
[49]   Laser rapid prototyping of photonic band-gap microstructures [J].
Wanke, MC ;
Lehmann, O ;
Muller, K ;
Wen, QZ ;
Stuke, M .
SCIENCE, 1997, 275 (5304) :1284-1286
[50]   SPONTANEOUS EMISSION NEAR THE EDGE OF A PHOTONIC BAND-GAP [J].
JOHN, S ;
QUANG, T .
PHYSICAL REVIEW A, 1994, 50 (02) :1764-1769